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ABSTRAC f

Matching is defined as the methodology of merging micro-data files t,,
create larger files of data. Matching is often done to extract statistical
information which cannot he obtained from the individual files that are
incomplete. Current federal statistical practice involving multivariat.
filu-merging techniques is typically not based on a formal statist'ical
t Ie rv. In view of this si tat ionl, a survey oni matching is )g.ivei. Al I kiowii
inode ls for natch ing arc presented Iunder a unif ied fr;nework, wi ci i o i t.I thrI -e e s it u a t i os i11wo Iv in g thIie samie(- o r s i i i ,Ir inIId iv idual IIs .

The properties of a maximum likelihood strategy to match files of1 dt;i,,
involving the same individuals are derived via ranks and order-stafistics
from bivariate populations. In addition, the properties of this strateug
have been examined with respect to a more reasonable criterion called
epsilon-correct matching. Asymptotic results for such situations, includir,:
(i) the Poisson approximation for the distribution of the number of correct
matches, and -i-) convergence in probability of the average number of

IL epsilon-corect matches, have been derived. Small-sample properties, like the
monotone behavior of the expected number of matches with respect to tle
dependence of parameters of the underlying models, have been proved.

Two mntching strategies due to Kadane (1978) and one strategv du t
Sins (1978) for merging files of data on similar individuals are discused.
These strategies are eva Iated via a Monte-Carlo study of ma, tchin g mo t I.
invoIvin g trivairiaite normal distributions.
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1. INTRODUCTION

One of the most important tools for analyzing economic policies

is the micro-analytic model. This technique is used frequently in

public decision-making centers. Virtually every Federal Agency uses

micro-analytic models for the evaluation of policy proposals.

Direct use of sample observations rather than aggregated data

is characteristic of the micro-analytic approach. For this reason,

the micro-data that is used as input to the model has a significant

bearing on the validity of the results of the model. Furthermore,

when all the input data come from a single sample, the quality of the

model depends on, among others, sampling and data-recording proce

dures. However, if the data from a single source is insufficient or

partly aggregated, then typically multiple sources of data are used

to provide the necessary input to the model. At the same time,

issues such as validity and quality of the results of the model

cannot be assessed as easily as when we have a single source of data

as input. In such situations, government statisticians have been

using a methodology in which multiple sources of data are merged to

form a composite data file. Effective use of the different pieces of

data in order to produce sensible but more comprehensive files is a

fundamental issue In the file merging methodology. H
S %

~ -' -~ '
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Some of the difficulties associated with the merging procedures

and techniques for their resolution have been known for quite some

time. Initiated by the Federal Subcommittee on Matching Techniques,

there has recently been renewed effort to establish solid theoretical

!Woundatlon and empirical justification for the file merging metho d

I ogy. Ths r-search reviews the relevant 11t erature and then prie

';ents new statIstIcal properties of some known procedures for, merging

data-fties. We shall now give an example of a typical situation in

which merging of two files is carried out.

1.L A Paradligm

A micro econ)mlc model in heavy use at the Office of Tax

Analysis (OTA), Department of the Treasury, is the Federal Personal

income lax Model. This model is used to assess proposed tax law

,harikyes in terms of thF)ir effects on the distribution of after tax

irncome, The ,ff Ic ency with which the changes will operite in

,ic.hIeving their objectlves, etc. The inputs for this model are two

sources of micro data, namely the Statistics of Income File (SO1)

,id th- ",?rrrent. Poptilat. 1,>n Survey (CPS). The ;01 file is generated

annually by the Internal Revenue Service (IRS) and it consists of

persorial tax return data. The CPS file is produced monthly by the

Bureau of' the Census. As we will explain in Section 1.2, such

S(,1 lung of data f'r,.)m more than one Federal Agency has been severely

restricted lit recent years by, among others, confidentiality issues "

;,jch s the prlva-y of' Thf- r(livlduals Involved In the aforfrnm-tit1 )ned

*U-
[% %

-i
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files of data. For this reason, complete information, especially

identifiers such as social security numbers, is typically not

released by the IRS and the Census Bureau. The resulting micro-data

files are compromises between complete Census files and fully aggre-

gated data-sets. Thus, sufficient detail remains to support micro-

analysis of the population, while partial aggregation protects

individual privacy and greatly diminishes computational burden.

A typical problem in tax-policy evaluation occurs when no single

available data file such as SOI or CPS contains all the information

needed for an analysis. For example, consider the variables

W - (X,Y,Z ,Z ), where
1' 2

X Allowable itemizations and capital gains

Y = Old Age Survivors Disability Insurance (OASDI)

V ZI  Social security number

Z2 - Marital status

Suppose that we are interested in estimating a simple correlation

function g, say, of W; that is the integral

-Y - g(w) dF(w)(111

where F(w) is the joint distribution function of the variables in w.Si

Now, the SOT microdata file cannot be used in its original form since

It does not Include the OASDI benefits (Y). Census files (CPS) with I
OASDI benefits do not allow a complete analysis of the effect of I

Including this benefit, since it does not contain information on

I,
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allowable itemizations and caoital gains (X). Thus, ILnstead of

observing XY,ZI,Z Jointly on the same units, we have to yet only

the following pair of files:

Fle( I (SOPI: X, Z 7

and

File (CPS) Y,ZL ,Z 

,
Estimating y based on the fragmetary data provided by File I and

File 2 is an important prac1iicaL problem that has not yet been solved

stshactorly. In an attempt to cope with fitjations such as the

'-. odel. Feder'al AgencIes hare lon 7 be sing procedures ft.u

!'u'Ig or -'gng the *.wo i ncumolIte files so that one can do the ,

,.s'131 In TrhrCe f~r- y, hoping that the merged file is a reasonable

iub t lute f'r~ the lnobe,-ved dtata on (X,Y,Z',Z 2

T.e-p re~port Ing units In C[PI are hous eho 1(Js In general, the

n i ts In a file may refer to other types of legal persons, like

,orporations, partnerships and fiduciaries. The term "individual"

wil! 'e 'sed as a g-nmeric IaWel in this thesis to refer to the

r'oporting !Tn its of the micro data files.

1.2 A Dichotomy of Matchln& Problems

Poughly spe'.k ,ig, there are two different categorles of matching

)r"h'f;. The, !' : 'teVory consists of' problems of exact matching

in Which 1 I' 1,s 'e " identify pairs ()t' records In the two files

That pertain to the same individual. Accurate Information on Identi j
fiefrs such as :,'i31 se-urity number, name, address are assumed to be
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available when exact-matching the two files, it is clear that all we

need to carry out an exact match of two files is, among other tools,

an efficient software to sort the individuals by their identifiers.

With the help of such software, we can, within reasonable error, link

a given Individual in File 1 with an individual in File 2 such that

these two units possess the same values for the Identifiers. The

resulting merged file contains data which are more vomprehensive than

both File 1 and File 2. Also, even after merging, most records will

pertain to the same individual, the number of erroneous matches in

the enlarged file depending on the particular software used in the

process of merging. It is clear that, if accurate Identifiers are

available for the units in the two files, then no statistical Ismues

are involved in the matching methodology and we shall not discuss

this type of problem any more. However, one may refer to, among

others, Fellegi and Sunter (1969) and Radner et al. (1(80) for w ,rk

related to the exact matching methodology. We shall cl(,)se our

discussion of this type of matching problem by not ing some of the

reasons why exact matching of files is often not possible.

First, over the past several years, there have been signif'icant

4' changes In the laws and regulations pertinent to exact matching of

ru records for statistical and research purposes. New laws, esp.ecially

the Privacy Act of 1974 and the Tax Reform Act of" 1976, have Imposod

additional restrictions on the matching of records bhflongiri, to mTore

than one Federal Agency iAnd on th- mat chin g (X fries (Xr Fleril I

Agrk'nc Ies with t hi)e of (0I her orga[iI /l. , tIon As ij r-;o I t (,f' I ht ;e

a.,.,

* ~ Va .'
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laws, some Agencies have Ilmited access to their records for stat Is

tical purposes to an even greater extent than seems rict-ssary by

statutory requirements. P

analysls of microdata oft' en nvolvye (!atit f'romy) iirii that

are rnot available from a single source but are available from several

sources For examole, suppose that one is interested in the relation

ships among wo sets of variables, one set consisting of Informa! ion

about health car,.o oxpen.es Incurred by individuals and the other set

,on s Ist Lng oX' informat !un about. receipt of vartous types of welfare

",herf it:; S,.ppos, ' turther tiha3 no exist ng data f le contalns all of

,e reded v __ -itles, but that two saimples of A target population,

wh! ch come fTom wo dI ferent surveys, toget her intain all these

v, t"Ix,,,' If oxcut 0 ng a new lj.rviy to obt al ) alI the variabls

fr'om a single sample is not feasible, then one might match the two

samples and use the merged file for statistical analyses of variables ;"

which are not present in the same sample. Note that. the two sample

surveys may have information on the same tidividuals whose !den

rtis are either- unknown or unreliable. However, in the afore

Mft lll-,e example, it is more appropriate to 1ssum( 1hat the twO

c;amples coritain very few or no Individuals In common. In case the

two :ampls are stochastically independent, we shall describe the

units In th - two amples as slmilar indIvIduals.

Suppos,4, then, that. ex ct ndthlng Is not Ceaslble In vlew u,

the aforementioned reasons. The~n *he tools that are us-d in the ,

exact matching met -<)dology are Inadl,qurate f'or the purpose of merging

4,. ~~~~~~; 0rpA. rO re .-



nco~~~ ~ ~ ~ ~ -, -- - =.Vl VF1r 7

w

the two files of data. In particular, identifiers are practically

useless. However, the probabilistic structure of the populations

that generate the data in the two files or other statistical

techniques can often be used to combine the two files. Such proce--

dures will be called statistical matching strateges.

In the literature on matching files there 1s no consensus on

rigid definitions of Exact Match and Statistical Match Indeed, it

is traditional to distinguish these two types of problem by verify-

Ing whether same (exact) or sImilar (statistical) Individuals are in

the two files. Our classification of matching problems is somewhat

different from the usual practice in the sense that any procedure

for merging files, which may contain the same or similar Individuals,

will be described as a statistical match If statistical techniques

are involved in the process of merging. This convention is in agree

ment with that of Woodbury (1983), who describes certain matching

problems involving the same individuals in two files as "Statistical

Record Matching for Files".

1.3 A General Set-uPfor Statistical Matching

Consider a universe )/ of individuals. Let X, Y, Z denote three

9..
groups of random variables and let us assume that we cannot observe

the vector W = (X,Y,Z) for any unit in However, suppose that the

following data are available:

(Base) File 1: nI individuals, each with information on a

function W7 , say, of W.

V.I

40
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and ('Supplementary) File 2: 2 Individuals, Pach with 4rifu)rmal Ion

on a funcioln, W ;1 say, of W.

Various matching problems arise depending on what type of data are In

WT and W;. We, dist Inguish only three different situiations:

Case I: WT X and W; - Y; we also assume that. tthe two files

contain the same Individuals.

Case II: l.et W" -- (X.Z), W; (Y,Z). As in Case 1, we further

assume t hat. the two ftIles contali hre same Indivoiuals.

Case Ill:I Let W" (X,'Z), 'UW (Y ,Z) Ulike In Cases I and i1i, we-

assume that the two files contain similar tnrdividuals.

1.4; The Matching Methodology-

Some TmportantSteps

We shall now menti on some steps involved in actually creating a

;tatistioal match botwoon two given fils. First, If the populations

represented by the files differ, a "universe adjustment" is carried

;)U1 tc #-);ulro That !herfe Is a cv vmmoni ui)verso J// f,[ro which I he irli

M/ 1 h'1101 I eol I h t' I h ri I e ss fv : (nh) bs v a I riv I r ' t lit i I t s h t cn

(eP gut. prsff'is( ari t he in IA;o bevt o vteto Ih;d

e ~ ~ ~~ -J tilrlos rdta n Third , "matching or- v'ormon varilab les ,

Z, are defined and it is assumed that File I with n1 records carries

Information on CX,Z), whereas File ;,, with n2 records consists of data

on4 (Y, Z) The vari ablIes X arid Y are of t en cal l Ied rion mat ch ig

variables. Finally, in the "merging" step. It' the records (XZ)

and (Y ,Z ), respectively from File I and File 2, are to be matched, O

then one completes the I th record In File I by subst itiing Y for -



the missing value. Thus, we get the synthetic FIle 1:I

Clearly, the same methodology can be usied to get a synrietic File 2

by finding substitutes for missing X values of File 2 tising X's from

File 1. However, In order to keep our1 discuIssion simple, we s-hall1

often be concerned with completing only File 1. Although, many

different methods have been used In this final step, several basic

similarities can be identified. In most matches, certain Z variables

are treated as the so called "cohort" variables. Stich variables
0

r'stabll sh "pac'ket s" of the records In each of the two filrs, withi

mat chi ng permi tit d only bet wen- pairs (W cas' 's in t ho -am(- p~ckt

For example, frex Is often a cohort variable so that a male "ani be

matched with another male, and a female with another female. This 1

ripabout the formation or cflls or packets Is aimed at. diffusing

the dissimilarities between uinits that are being matched. Further

more, depending on how many of the conmmon variables are use-d as

ohort variables, there may be very little or no within packet

v~i'*-O ion with rf gard to Z. In such situations, Ftile I has diata on

X 'rdFi le 2 has data on Y arid we woulId like to merge- The t' iltos t i)

j-inl t lliorrn:: ion )n X and Y. Note:: hat , 1 ii 2etCt 'Loll 1., Su'ti ai

within a packet Is typically based on a "measure of dissimilarity" by%

wthich a "distdance" Is computed between a g ivfon File I recor'd and each

p'~ltrit I al Maltch lInI tit- -.1j)l em-'nt a:ry fl. 4e A pot en?. i a matIch witIh

oco

OP'



the stai lest dl ;t ance Is (-ho:;'-n as th. e :at ch t ti;it wi 11 1 l)r- ide, i h

missing Y value a F tiLe I record.

1.5 Two Basic Types of MatchinglStrategies

Suppose that the age of an individual, Z,, say, is a matching V

1'f
var iable. Then, one may def ine a distance measure d, say, betwetn

tndividals I in File 1 and j in File ;) by the equat ion

d ij = 2z z 1

For It xed 1 ,?. .. In} , orle wi I then match one p t;sb]e J" In

t, h 46File 2 with I record in File 1I if J" minimizes d over j. That

IS, j depends pos s 1 bl y on i dind sat Isf i os t Ie res r I (-t, i on

d min d.i (1.5.2)

if the chokce of 3" involves no other restrictions, then the stalls

tical matching strategy is called "Unconstrained Matching". However,

there are typically additional restrictions subject to which one must

choose the optImal match j" from File 2. Matching data files with

The rest rt,'l lon 1 hat 1he variance ('ovclance mat r-lx of data Otfmin; In r

-'ac h fr Ie b- pl, ert ical to the var-'ance covar'onince matrix of) the :;ame

data items in the matched file is an example (o' a "Constrained Match."

In order to formulate this type of merging mathematically,
'-I

assume f ir:;t for simplicity, that, both f'iles (-arry only n records;

that is, the common valile of nI and n2 is n. Let

1 2

>4 ~ La



a ij 1 ifIt record in File 1 s matched with the j th

S record In File ? 1 <- 1. j < n (1.5.3)

0 If the it h record In File I is not matched with the

jth record in File 2

.- Then, the following additional conditions will ensure that the

aforementioned preservation of moments is achieved by not letting

more than one record in File 1 to be matched with the same record in

File 2:

n
a i , for j - 1,2....n (..4)

n

X a l, for I z 1,2,..., n (1.5.1))
jl

Now let dij denote, as In the case of a unconstrained match, a

measure of inter-record dissimilarity given by the extent to which

the attributes in any one record differ from the same attributes in

another record. Then the optimal constrained match minimizes the

"objective funct ion"

n i]• >i dl a j (1 .,,
dl

,ubject to the restrictions in (1.5.3) to (1.5.5). Clearly, this 'S

,xtremal problem is the standard linear assignment p oblom in

"Opt imizat Ion."

A matchIng situation more typical of problems relating to policy

analyses is a constrained merge of two files with variable wfeights
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in both files and an unequal number of records In the files. Let c.

be the weight of the i record In File 1, and let B. be the weight

th
of the j record In File 2. If nl, T2 are respectively, the number

(W records In File 1 and File 2, then we minimize the object ive f''unr(:t ion]

in (1.5.6) subject, to the Pollowing constraints.

, cx 1 1........ (1" ")
1

n I

and

a O, V i and (.5.10) -

II i s ( oar t hat all opt I ma 1 ,?nst r ral ned mat chI ri, st 'ate' y when

t wo fl l'g haye r'q.ual riumbor of" Individuals is the : t()[ lt o f "' 1*

a standard tranlsportat ion pribl-m n which the roles of" tile "wilre ,5

ou2 .5" and "ma'kets'" , r, re.pe(.:tvely played by the records n File

1 ard File 2 ard the "cost of transportation" is the Inter record

distance "d.. Existing algorithms to solve a linear assignment or ,. '
%.

tr;risportat ion probtem ,'an be used to complete the final "merge"

-;ter) giving is the :syntheti.' 's,mple

-I% *-

1

% ,
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Sgwhere Y* denotes the value of 'I assigned to the I t h record of File 1.

The sample in (1.5.11) may now bE used to estimate a parameter like

.A y in (1.1.1).

1.6 Criticisms of Statistical Matching

In Sections 1.4 and 1.5, we described the g+neral form )F most

matching techniques that have been used by Federal Agencies.

Matching records at the "packet" level means basically that the

random vectors X and Y are stochastically independent, given the

value of the common variables Z. In the particular case of a multi

V variate normal distribution for W = (X,YZ), conditional Indeperndence

assumption is equivalent to the claim that the partial correlations

among X and Y variables, controlling on the Z variables, are all

zero. This point was made first by SIms (1972) and repeatedly by

others since then. The conditional Idependencr- assumpt ion Is a

stronig one for which convincing just Itf leat loris has gen# r';lly not bt.i*.

-offered. It implies that the relationships between X and Y ,can be

% totally inferred from X's relation to Z and Y's relationrship to Z.

Sims (1978) stated that matching the Files under such assumptloris Ii

unnecessary. He also sketched an alternatIve statistical procedure

p that uses the data in the two files to estimate, ndr ,irlit eonal

H %% Independence, a parameter such as -y In (II.) ims' i ltorrnit Ive

will be discussed Further in Section 3.2

FelleglI (19"78) and many other Invest leatr' ; h;ive ,,xpr+es;k,,d gret

-% +',ilt 'IonI atl() lie 110 (Xt :;tr 1St i- rn <i l h Iut ' , i.i ,e jio t ',
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known about the accuracy of the estimates of the joint distribution

of W produced by synthetic files.

Notwithstanding these criticisms of statistical matching, there

is no viable alternative statistical procedure that will, in gtneral,

provide better estimates of y than a synthetic file can offer. ;

Given this lack ()f good alternatives, especially when con-litional

iidoperiderice does not hold, the area of statistical matchirig is wide

,,pen arid both thei'et-Ical and empirical rivest igat oris to d:;covvr

the properties of synthetic data files are in order.

I

1.7 Reliabilityof Synthetic Files

The precision of synthetic-file-based estimators of a given.

parameter relevant to the population of W = (X,Y,Z) is affected by

various types of errors that occur while matching two files. To

*discoss these matching errors, let us f rst restrict our attention V

to the cases where the same individuals are in the two files, namely

Case I ;ind Case Ii I

In pract I', I t_ ; im'm, Ir I nevitabl in1 mosst match i ng proj eCt
.a

that some match ing errors occtlr, even with the most sophisticatedI]
procedure and the most careful execution of matching of the files.

These errors fail into two major categories:

i) Erroneous match (false march) or linking of rpcords that

correspond to different individuals.

(ii) Erroneous non match (false non match) or failure to link the 2
records that do ,orrespond to the same trid Ividual.

1%
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The reliability of the results of a statistical matching

strategy is often defined (Radner et al., 1980, p. 13) as one of the

following coefficients:

(a) the proportion of the correct matches, that is, matches of P

records on the same individuals.

(b) the proportion of erroneous decisions, that is, false matches

and erroneous non matches. 
I

These reliability coefficients are random variables because, In
I/' view of the terminological conventions of Section 1.2, a statistical p

-. matching strategy is dependent on the data in the two files. The

sampling distribution of the reliability coefficients, either exact

or asymptotic (as the sizes of the files grow), are very useful in

judging the quality of a given matching procedure.

Now, we will discuss the reliability of a synthetic file in JW

Case [I, where the two files contain very few or no overlapping

I IdI v iduals . First, note that the definitions of error In the

results of matching, which have been proposed for Case I, are not P

applicable to Case IlI because the linkage of records from the two

files that pertain to the same unit seldom occurs In Case III. In

other words, almost- all linkages In Case III are false matches in the

sense of the definitions given earlier in this section. In Case III, I

"; definitions of error and reliability which are tractable from a

theoret Ical perspective are unavailable at this time. In fact, I
I t t hrft [( al w ri'k o 1 the errors present In the :.ynthet 1 f'lies

I*-
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of Case III has been done. Until now, the evaluation of a given

matching strategy in Case III has been done from an -mplrIal point

of view. A case In point Is the work of Rodgers (1984).

In Section 1.3, three important cases for merging two files of

data were distinguished. Of these, Case I and Case II are relevant

when the same individuals are represented in the two files. Case III

arises when only similar individuals are present in the files. This

research Is concerned with both theoretical investigations and

#-mpiri(cil evalual tors of the qualit.y of synthetic files in Ca:;e I aid-

IImI .I Wf- :;11,1 1 1 not dIiscuss Calie- 11 in this thesis .

In Chdtptt~r "', Case I is ditscussed at some length. A rev ,ew of C9

known rosults for this case Is given. New optimality properties of

a maximum likel hood matching strategy are established. Some small

sample and large sample properties of" the number of correct matches

with regard to this strategy are derived, shedding some light on the

reliabiltty of the synhetic file arising from using the maximum

V kel hood 51r.3l,'g,. .

Case [If is the topic of Interest in ,;,.(tii , 3. The bulk of the %

dis,'ission In this Chapter is confined to matching two files of" data

that a re, sampled fr()m at I var;ite normal popijlation. Thus, if'

(X.Y,Z) Is at ti refe d( nlorislonal normal rand.m vector, F1 ll 1 hts dat it

on (X,Z), while File 2 has data on (YZ). Two strategies proposed by -

Kadane (1978) and one strategy due to Sims (1978) are used to create

f

A
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3 synthetic files out of simulated data on (X,Z) and (Y,Z). These

synthetic files are then evaluated by comparing the estimates of the

correlation between X and Y provided by them with the estimates based

on unbroken data on (X,Y,Z).

-UN
• II

oVI
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MERGING FILES OF DATA ON SAME INDIVDI.ALS

A useful olass ifIcat Ion of sltuaLlons Involving statist ical miat

'hcirg of" datd files was discussed In Sect Lon 1.3. It may be recalled

that in the context of the two files having the same Individuals, this

classIfication scheme included two cases. Case I is the scenario

where no matching variables z are present, while case HI is the --

sitiation where matchIng variables are part of the statistical model.

in this ('hapte[, we shall discuss results relevant to case I only. -

2.1 A General Model

T
Lot U ! tie a mull I dlmerislonal random vector with CA.9.F 11(t ,u)

ard P h.F h t ,u.) Let [,0.I, 1 1,2..., n be a random sample of'

-. Ize T) 'trim it. W#e 1;ha I tll-me that these sample valuos got brkfri up

! tto -.!I mprnt vect or-s T's and U's before the data could beL

reordfd . This we ,1 n,-t F'i-w wh I0h T arld U valies wore paired I i he

original -amp) Frd the two files consist of the f-Illowing data: -,

File I x X x-, 2 -n'.. ,

which Is a r uiknown permitta oun of T, T , irid

File 2 Y Y ' ",7

which Is an inkrOwT) permutation of U . . Un

I

S'-
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DeGroot, Feder and Goel (1971) call this a "Broken Random Sample"

model for two files.

Two types of statistical decision and inference problems arise

from observing a broken random sample. The first type of problem

involves trying to pair the x's with the y's in the broken data in

order to reproduce the pairs in the original unbroken sample. The

second type of problem involves making inferences about the values of

parameters in the joint distribution H(t~u) of T and U.

This chapter will be organized into a review of the literature on

matching problems in Sections 2.3 to 2.5, followed by a discussion of

statistical properties of some matching strategies in Sections 2.6 to

2.9.

2.2 Notations

In this section, we introauce most of the notations that will te

used in the present chapter.

T
(1) (U) will denote a multivariate random vector. It is assumed to

if 0_, have an absolutely continuous joint cumulative distribution func

ti(in (CDFi) 11(t u) and joint density h(-t u ) ; the context will make

T
'the dlmensions o)f t and u clear. In part. cu lar, (U) wI 1 (I not

P. a two (1imenslonrai random vector, with h(t,u) and 11(t ,u) respec

t I t Iv,1y a.; t he densIty and CDF )f (T). hi(-) and h (-) will

WV,.. respect vely denote the margnal dens ilies of T ind U arid F(-),

* ) will b'e the respe(' iv y nirginal d ist ribut-lon furict ions.

The ,;ymb()l (-) will be The generic nolat ion tor the den-;1ty

I1
%I
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define the constant k as j (x,x)dx, which is the density of the

random variable T-U evaluated at zero. For any fixed integer d,

define

S = (SnS where (2.2.7)
nl' . nd

S R R j ? .. n.'-p Snj ij J' :12n

Note that if

ITUV 1 < d i nd I I k < n
jk (T. T >0) (U Ii >0)'

Ik jk-

then we get thei representation

n

, nJ k, j  1.2,... d. (P.2 9)

nj k-i k

.
let k =  ElK.......dk) ~22iO?

Then,

n
0(2.2.1) I

-n
k I

Le Ik CT. T >C) (U. -U >)' I -

j k j k-

I I L j. k n(2~)I
,2jk (Ii U '0) (T Tk> n

j k jk

Let L = T-U and 1 =T U, where j 1,2, .... Let A be
i jj d

the tigma field 'i(WI, .. , W ) generat-ed by the vectors
-jd IV

W u ) 1,2d.... i. Let Ty)(0) be the generic notation for

the (harvL1 to u ;v i j'i I or(if a "I orrl(,( r e r, 0 bt jig a ve1

I,>r" A (Il, ri y V tIit' e s Wti :-o' m1 I ',i I s jth :;<,me a.; hat tf' r

l-

t I
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Let k(Wi' ... d ) be the variable ,when W1 takes tf

value w 1 1," -, -. d.

, I '

Let 'Ck ( . . d )  a nd S } ( . .. wd) be
k-wl k I 1 'l--

r-es pec t Ive Iy kand Swhen W. i. 1 1,2, d.

Let Td w.(.. ... ) be te riegatIve logarithm of the

modulus o the characteristic function of (W ,  W

k-id

respctivly .3 D-and wen W. w 1 1,2,.., d.

'airing the observations n the two datafiles that were des

,mribed iu Section 2. should be distinguished from the problem ofII

matt'h n' 2s .s fol?)ts Cbonsdr a "taetr pack" o ) crds laid out

In a row and a -matching pack" of the same number of cards laid out

randomly one by one beside the target pack. In this random arrange-

ment of cards, n pairs of cards are formed. A match or coincidence

is said to have occurred in a pair If the two cards in the pair are

ident ical. Because the two decks are merged purely by chanc-, cnd

without us rg any Type ,<{ ob'-ervattons or other information about, the

cards, one may describe s,':h problems as no data matching problems.

An xcollent survey of" various versions of card matching schemes Is

Supposek that N deiol,'-s t*he number of pairs In the aforementi1 oned

matching proble.m which hdve like oards or mat(hes. The derivation of

the probability distribjtion of N dates back to Montmort (1708). The

"-
,
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following is a summary of some of the well known properties of N

(Feller 1968):J
peollon 231: If P[ is tle probability of having exactly m

matches, then

W P - 1 + - 1 + m 0.2, . n-[m ml21 3 (n-m)l] ,m =0 2n-

and p =
P [ = ,

[n] nl

(11) Not Irig that Is the probability that a Poi sson randomK ml
variable with mean I takes the value m, we have the following

approximation for large n:

S--rim] 
m!

(ii) For d 1,2, ..... n, the dth factorial moment of N, namely

(d)
E(N ))  is 1.

pAs one might expect, for certain broken random sample models, it

pays t ( match two files of dat.a using optimal strategies based on

1uch (tat a. Several authors starting with DeGroot, Feder and Goel

! )(1) have pr,po.;e-d and studied matching strategles based on broke-n
p

(dAta . In Section 2.9, it will be shown that, for certain matchlig

:;t rat egies based on independent variables T and U the distribut ional

pr-,,p,,rtles of the number of correct matches are the ;ame as those

toned in Proposition 2.3.1. In other words, as far as statis

tiral properties of N are concerned, matching files of data on Inde Ile

poruIt-nt random variables is only as good as no data matching in whi(ch

w,' r'ind(omly a ;sign units In one file to the units In the othor ii le. ,%

,%0



2.4 RepirnK.a _Broken Random Sample

2.4.1 The Basic Matchtng_Problems

Let us consider matching the broken random sample x1, x2 .

x ..... Y by pairing y for i 12, ..., n where

(tp(l), ..... w(n)) is a permutation of 1,2, ... , n. As we seek a op

from * that will provide reasonably good pairings of the x's with

the y's, we need to clarify the fundamental role of qp In the stat is

tical model described in Section 2.1. If we treat ( as an unknown .

parameter of the model, then the likelihood of the data will include

p For Instance, If' T ind U are jointly bivarlate normal with meanrs

2 2
2variances 2 0 and correlation coefficient p, then the* 1 ' 2' a n ,

log likelihood furwntl f ' op p o , 2, given the broken

random sample, is

2 2 "

.(P2 .... xn, Y , ... I Y

2' 2 n noa >g1

n log(1 p2) n 2 n.I 2
2 2 2 2 22

x /,, 4 i (4 y o > )./2(1 2 l(x

r I
2 p } (x 1  Ul (10 21 o2 . . 1

A constant term not Iriivo Ing the parameters has been omitted In

(2.4.1). In subsect In 2.4.2, we shall seek (P's that maximize the

likelihood such as this. On the other hand, some statisticians

would regard V as somfe s)rt of missing dat- and not as a parameter

': %



of the underlying model. The problem of pairing the two files will

not arise in such situations. However, one may still want to do

statistical inference for other parameters of the model based on the

broken random sample. Such issues are not pursued in this thesis

and one may refer to DeGroot and Goel (1980) for an approach to

estimating the correlation coefficient p while treating p as

missing data in the bivariate normal model.

2.4.2 The Maximum Likelihood Solution to the MatchingPoblem

We start with a blvarlate model used in DeGroot et al. (1971)

T
which assumes that the parent probability density function of (U) is

h(tu) = o(t) 8(u) exp[y(t) 6(u)] (2.4.2,

where a, B, y, 6 are known but otherwise arbitrary real valu-d

functions of the indicated variables. Suppose now that xi ... I xn

and y, ... I Y are the observations in a broken random sample f'rcm

a completely specified density of the form (2.4.2). If x was paired

with y(P(I) for i 1,2, ... , n, in the original unbroken sample, then

the joint density of the broken sample would be

n n n n
n h[xY (1 )] n oL(x )i[ [ B(yi)]exp[ Y y(x1i  6(Y

(2.4.3)

This the max imum I kel lhood est Imat e of t lie unknowii perml aI 1)n 1s

n
The permutation f'or which Y y(x i) 6(y,(1)) is maximum. Wit hout

ii

l(ss of generality. we shall assume that the xi's and yj's hiAve tben

s-rHndlexed so that y(x ) . .. y(x ) and 6(y[) <. . . ." (yn).
In I T

'U



T
: rince (U) Is assumed to have --n absolutely ,oit Iruolis dt:;f riIu, lW . .1, 1)

wIth 1ro at I IIt y ui e, th ere are n) tIes among y( x)' ry.'

h t oq, ( )()t I ( 1'7I ) sh ows that the ma Xi mum , 1kei # i ,, :I I I I t 1 22

o paIr x with y for I I . n. In other words;, th" ntxinhr,

iIkelihood pairing (M.L.P) Is p" = (,. n) ,

In part icular, if the density In 2. 42 Is that of a bivari:it-,

normal random vector with correlation o, then M.L.P,can be dIescrl'bed

knowing only the sign of p. If p > 0, the M.L.P. is to order the

,bserved values so that x < ... < x and y " y and thf-l ton n %

paIr x with Y I for I I2 .. , n. If p < 0 th, elut iole

is to paIr x ana y(1 ).. %

pa irlrigs, )r" permutat lorins, ar equally 11ktely.

Chew (1973) derived the- maximum likelihood solut ion to the

;'Mvariate) matching problem for a larger class of (lensit ,s h(t ,w)

with a monotone likelihood ratio. That is, for any values t, t2 -

< t 2 and u < u 2 , '
ard u such that t< it 2

h(t ,U ) h(t ,u h(t u ) h(t , u ) (2.4.4)

As Ji)-Vorf,, we sW 1 1 as '-me that- the values x ,.., x and
%

Y ' y nIn Phrokuen random sample are from a density h(t, u

t I f'y I rip, (2 '.1.11 Wit hout loss, r-labl tht x -'s and y 's so that 0

. x Irid y . Then lrmutt Io " ( .... .0. .tn)

is again the M.L.P.

%~

, p '

ma'-.m-.'""',Y " '-".#"-' " '-" . -."-.- '"- O i'J"- J.' X J," " ... "--' . .' ."' V '. . "."- - "- ,"-.
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2.4.3 Some Bayesian Matchln Stratepes

DeGroot et al. (1971) studied the matching problem from a

Bayesian point of view as well. They proposed three optimality

criteria, subject to which one may choose the matching stratt*gy p.

Before we state these criteria, we need some not.ation and definitions.

0 Let x i n and y1. . . .. . y be the values of a broken

random stimple from a given parent distribution with (leri. I y h(t ,,1

It' x i s paired with y I 2 ... , n, then the likefllh ,,1,i P( i)' ,

f'uirwt Ion of tihe uniklown p[,-rmu tat Ion ,p is g1 yen by I ht- ,j, i in

n
L(y) = [1 h(t u ( )), (2..L

Assume that the prior probability of ch permutation .L Is Thtra

the posterior probability that qp provides a completely correct set

of n matches is

l)(w) L(..)/ X 11(w) (2 L't

j'( iEl . 1 2? n l !et

i 'L' '( ) !<( p (I) )( .'

1Ly L-p

I --

e: h e Tio ;Ht of (ri 1)l pfrm t a i(oni.; wh' "h :;p[o.,i_.'y That xI is to t1o

palcr,-' with y U .ing the leflnilioru.' 2.In h) ;irli (2 '4 7), we ,'1

Wthe p()' erir probability that thf- pairing (W x a dri y. yields a

(orrect match to t)e

P) j p(p). I . n (2a

F *r iny Tw , p<1rn ilit a op iii P, 1#0

" ",

-r, ;A . .. & .a



K (vq0) ( : p 1) 4(i)

T haIt Is. K ( 4') ft' he nuImber (i" (U'[' 't mathec; wh tlit h ,'.:;,'vit

S()Its I n tI tr'okfn tld(m samrlple are pa Ired accord I rig to p ji r I tit-

vectors in the original sample were actually paired accor'dirg to 1P. _

It then follows that for any permutation -pCl, the quantity

M((p) } K(,p, ) p(,p) 4

13 the posterior expected number of correct matches when p Is used

T r-pal r t he data in the broken random sample.

SF l Sl I I l y l e t ) h ef I h e- : ; e t ( ' d ; : 1 1 p mit ' ~ a' t i o) n s t s u c( h I fl i tl

1 ,i7

1 Y nd Y() n

.ND e(;r'ot , Feder ard r;oel1 ( ( 7 1) have pr'op, ,ed three opt ima 1 try

riterla, subject to which one may choose the matching strategy w:

W (I) maximize tho probability, p(y), of a completely correct set of

n matches, 
.

Ii) maximize the probability, p, of correc:t ly matching x1 by

ci 0; rig all )pt i ma , j from { ). and

I I ) max r m i e t he #.xpe-' d Itiimber, M( p) of cor-reti mat ches Ili he
*"" 

'U.

5r', p a r',-d ;a f [l ,, 1'

As;un ri rig t -ht t tie hrv~tarite ( fle n .jty of T ;tnld I1 was ,v-vIi by

h~ t ,u ) a tt )b ( i ) ,e * t ,u ) ( R ' , th e, t' o, l( ,w ili r e.s u t.;, m , g".

h i t ie r , wr e e ut l TR T Ifeir , t e t i I ( 1W I 7 i

jt,

(a) The M.L.P p" maximizt-s the probability of correct pairing of all

n observations. ]

KI
- 0'. 

.
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(b) The probability of pairing x (x ) correctly is maximized by

pairing x (xn ) with y (y "

(c) The class of permutations 42 is complete; that is, given any
In

permutation oqjln there exists a ip-,n whilch is as good as
1 n

p in the sense that M(4) M(P).

(d) Sufficient conditions in terms of the data x1, . x and y
n I'

" for the M.1.1 T" to maximize M(y) were also givt-n.

The results in Chew (1973) and Goel (1975) are extensions of' (a)

through to (d) to an arbitrary bivariate density h(t,u) po;ses:;irp, th-

monotone likelihood ratio. The "completeness" property in (c) impl i#-'

E E
that the permutation (p maximizing M(yp) satisfies (p (1) - I and

""E( E
(o (n) .n for n = 2, 3, y- - (p DeGroot et al. (1971) show that t'.'r

E
n -> 3. i s not necessarily equal to the M.L.P y" by means of a

counter example.
rJ.

? .1 Mat ching Problems for Multivariate Normal DL;trbutt(orts

[n our review so far, we have dlsu.us:;(?d optimal mt, itchirg

strategies only in the case of bivarlate data, one variable for t,,A h

of the two files. However, multivariate data are ofttn avillable In,
T

bot h files. Suppose then that we have a model where (u) has a 4*,#q)

dimensional normal distribution with known variance covariance matrix

6 L et us write and its Inverse in tht following part it toned form:%..P-

WQ

andK? n

N .-
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'40'

I.

where both )1 and Q have dimension p x q. ,.

1? 12

As before, we shall let x,, ... x and .-... ''.... denote thte

values in a broken random sample from thl,; distribution, where each

x i. a vector of dimension p x 1 and each Xi vector has the dimen

i n q X I The results. to be presented here were originally ,le::

,-r' ld by l)beGr(o)t and GOel (1976).

The I kel hood futict ion 1L, as a tunct ion of the unknown pt-rmu

tat ion p, can be written in the form p

[,(,P) exp[ X X, Q 2 1, (1.4 10)
i 2Y (i)

I

:,irice the Mher factors in the joint density of the sample do riot

depeid on (p. If we again assume that the prior probability or each

permutatlon (p is n!' then the posterior probability that (p providJes p

,A -mpletely ('orrect :;et of n matches is given by (2.14.6). Thus,

m,,x mi 'rig 1)(,p) is equivalent to maximizing ,(p) , or equiv,il,, it ly

rn 1 ni i m z i g

nQ(,p) r .% Q71 yp (24 . 11),. !

1P Y-(P()

There is no simple way, in general, to describe the maximum likeli

hood solut ion.

However, if rank (X) 1 I, then rdrlk (Q 2) land Q (can be

represented in the form Q12 *b, where a and b are vectors of'

dimensions p x 1 and q x I. If we let y(x.) a'xi and S(X,) - b- 1  -

for i 1,2, ... , the P" will be the permutation that minimizes

L

j.7-

5-

w i'. """. *." .. ' 'w' Z .@"¢' - Js-. 's g.J. g.2""'. . .'. 4'- . '* ". . A - '-" . '-'A . A.- ". "- *..* .. . "%" .
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Qlq) = x 6(y ( 4.1 ; )

Now, minimizing (2.4.12) is achieved by arranging y(xils from

_smallest to largest., arranging (y )'s In the reverse order fr)m

the largest to smallest and then pairing the corresponding elements

in the two sequences.

Suppose next that rank (Q ) > 2. Without loss of generality,

we shall assume that p < q and let vj = Q12Yj , for j = 1,2, ... ,.n.

Then, both x and v are p-dimensional vectors, and the maximum likeli

hood solution ,p" will be the permutation that minimizes

4X VQ.. (p) x

Let D denote the n x n matrix ((O )) whose elements are d x v

.Then minimizing (2.4.11) is equivalent to minimizing

n n~~Q(Y) d,, a,,
" irl i-l

P %
e subject to the constraints

n

t-a 1, r j 1,2. n,

}d 1 , f'or 1 1,2...... n

F. I Ji

,%

ar 0 rr I,

'a q ~ a% %~ %j~p ~ ~ ,'T ,

-°
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which Is a standard assignment problem with cost matrix D. Although,

there Is no simple f'orm f'or the solution of an arbitrary assignment
problem of this Iype, efficient algorithms are available for inding

numPIrIcal solut ioIs.

E
The permutation qp that maximizes the expected number of'

correct matches Is very difficult to calculate when p and n are I.

moderately large. No efficient algorithms are known. A Monte Carlo

study was reported by DeGroot and Goel (1976) in which they compare

E and p" for p 2 and 50 different covariance matrices X with the

.ample size n - 3, 4 and 5. In all cases, the proportion of samples A

f)r wh Ich pE and p" were (lentical was between 0.925 and 0.995.

Tfus, It Is not unreasonable to use p" even when the goal is to maxi

mize the expcted number of' correct matches.
C;, -.

DeGruot and Goel (1976) studied two other simple matching P.

strategies which provide good approximations to the M.L.P (p* or to " %

E ..
the rule p E We shall not discuss them here. In the rest of this

chapter, we shall discuss matching problems only In the bivariate case.
1,

2.5 Fei-abil-ity of Matchin_;Strateges for Bivariate Data

Consider a random sample of size n, (TI), . (T), from a
U1 U

bivarat,, popuplat ion with density h(t,u) . If the pairings In this

:-impl, are lost before the entire data was recorded, we st I I ('an

1';e r ve t h.- marginal srr stIatistIcs. In t'act, if' x , ... , Xn and

Y y Is the broken random sample corresponding to the e- .

unobserved sample on (T) then clearly the order statistics

V"P



x < ... < x of the x's a:'e exactly the same as the order statx(1(n)

istics T( ) < ... < T of the T's. Similarly, the order-statistics

%( (n)

Y < Y < ... < Y are the same as U < ... < U The(1) (2 n 1n),

repairing of the x's and y's was introduced in Section 2.4. Thus

for each permutation (p in f, there is a matching strategy and the

typical merged file consists of the pairs %1
Xl 1 ) S

/ .' Y ( 0( ) ) , i 1 , 2 ,. .. n . ( 2 .5 .1 ) ,. '_

Some optimal matching strategies were discussed in Section 2. 4
Here, we are concerned with the quality of the file in (2.5.1).

Ideally, we would like to choose a p for which the file in

T _ I
(2.5.1) recovers all the (U) pairs that we did not observe. It is :

therefore natural to look at the random variable Np. the number

of correct matches due toT or, equivalently. the number of

unobserved sample points which have been recovered in (2.5.1). it

* should be pointed out that M(y), which was defined in Section 2.4.3, S..

is different from E[N((p)] because the former quantity is a posterior .,.

expected value given a particular broken random sample and,

in the latter, the expectation is taken over all possible samplos.

Sit uations often arise where it is not. crucial that, after 'he

5' two files are matched, the matched pairs are exactly the same as the

pair:; of the original data. For example, when contilnglncy tb ,

c()ntemplated for grouped data on continuous variables T and 1-, we

meiy, in the absence of the knowledge of the pairings. would like to '1
r-coristruct the pairs but would not worry too much as long as the

:.j,

% % %



11 value in ziny matched pair citme within it pre ti1x1-d tolerine - (a

* non negativye rtnmer ) of' thte tru [ Uf Jvalue that w- wol I hi c! I,(-e

A

10d alI m a tch- of t 'c)vetr r ig ,Ii I i Ire or-IIr i nAl n1 i rs . Th 1:31 I ip t

t I ipr-X ixIri n;i (it 'I i g' w a s t' II!;t Iflit rod I ic-d I)yY Yt-0 fv ( I Wi. I ,~

JlI

-I

lulli.'1 C ic'' tfilitchin AF f~~~i ol lows:

LDefiniton '. .1 (Yahav) A pair In the merged file (2'. 1),x .,,-. ,,.

) ) , -;ay, is c correct If Ut u ] c, where c > 0

and U is the concomitant of X that is, the true U value that

was pair!ed with X in the original sample.(I)

The_, rtumber of ,,,r'o t matches, N( ,), in the merged file

S> I) I.c; g, venr by.+

N( ,, ) ) .jT. I)

N <

N'l I th;il 1,:; 0 i. O, N tp; ) ( uverges (i lmost ;ui'el I t o N(4p; 0) , which
'a,

i a ,ak'int f the exact (0 correct) matches. Hence N(po), the number

of correct matches due to yp can be obtained from N((p;c) by formally l.

I ett infg c -0.

In the lg ht of th ( def irition of reliat) tlity of a merged file, 1o

gi 1veri in "f.ct ,on 1.7, the (,units N(,p) and N (n,c) are useful indic,s

who:-.e st a ist l cl propert I e.; ref'lect t he r- ItIit)ity of the merged

f'i le resu ll ti, f-,)m np . We :;hal I stud10y hese- perf'otmance character "..

I :'T ins in t In. , i t wt 1 I!' ' S - )lit:; .

.+

, .

,% '- "i-" ",'%'<,- " --" , ". .-.-" "," , ."", " , " .- ,'- -.-"', .-"'' --."-, " -. •.- ..... . .. --. .-, . .I



6

P 2.6 An 9IMP~1Y Prperty of the May;rnum

The known resillts about 1'h, o)pt Vmait y (X I he ma~xlmum likv 11hof%1

pi Ir " lie, n ) wi Th respect t o i;-nie r :ytU;i in r I raS._

wtve rev iewed in Sect i oiri 2 .4 . lHere, we s hal II rot- 'AH ~I r w c

arid e t--abli sh tLrat p"is opt imral1 w t h rs oeclt to t hat crit!erloi

,4Consider 
the random variable N() , flie number ot' m-r-1c

matches which result when a permutation y~ in 1 is T,-; nt rge F

the broken random sample from a bivariate populatilon. In this

s ee ion , we s hall s how t hat (p" max im i zis E (N (q)) t ht e ex p(,(,d

ii inter of (-orrec t mat ches , proy 1 ded t ha t It pa re n T (1 Is it y i )

x i b it s ce rta n dependence st m e t Ufi 
.s

We beg- in willh quol In it very u;'i!r:iItu ye irg

;Al I I 1,y oft randlom vatr Iables f'rom Riind I #s inid Wolt1 F( IT ()' '4.

Lvomxa .6 .1 I f , d- anId K( i s a mea: i c iabIe fi inei on (p;~y

Pvv' o, r va itIued I dle rI n ed o((Ti I tie comimoni uppr of' h-:;- r;rrif1.m vect

K ci K(rr)

Wf, now establ sh a r pr :;vr a i on for N p, ) a; a ;m

P~~~0 li111)I It~va~ B ri I I .rrilflm vt i~ thl 0.;; * h wl h W) I I n (;.

x If-(l i rik', r-oiilIt ; of' Y ili1iv li . )

!~l'((-(n 2.. I I,? N(p. ) inud V/ (p.f' )t- t ; lviii oy t

( )1)respect I vf'Iy. Ton i

V5

%

% %
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V pin <P, N (y,) V Of C) (2. 6. 1
n i

IdI

1-4'

where the summands are exchangeable random variables.

Proof: The order statistIc ( )and the concomitant U[i ] ()F T M.

i:;oI In (2i.f)2) (-n b wr~it Ien in terms uif" ranks of T'.- and [I':; t:;

t'o I Lows :

n

(,Pi ( (R (26

n

Note t tit N( p, c ) Is simply a count of how many pairs in the ni,rgd(

t' IP Du- to (p, namely,

T(j)
( ', n % 4 )

U 
%

tr(( ) U[11 I  
( 2.6.5)

If (2.6.5) holds for some i, then I a j such that

,

I i vI ew of t te con inlity of (T , Ui), this ('orrespondence is one to _.

one. Therefore, I tie count N((p, r) must be the same as the count given
.5

by

I

oe
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n
N(y,c) = X. I <T (2.6.6)

Hence, (2.6.1) holds by virtue of the definition (2.2.4) of Vni.

U Towards showing the exchangeability of the V 'S, note that the
ni

original sample in (2.6.5) are Independent and Identically

distributed vectors. Hence, using the equal in distribution

notation, we get

(WOL .. a n d (W .... * ) ( ... )

where (aI, .. .,a ) is an arbitrary permutation of (1,2 .. n).
n

Define a function f = (f, ... , f ) from Rn to by the equatiris
n t b es

n n n
I if r < ( I a I 

(b-b >C) (a a >0) (b b, -6

f

0 if otherwise

, -- 1 ,2 , ... , n ,(2 . .

where p is the matching strategy we started with and (alb..,
2nI

a n,b n ) Is an arbitrary point In R

It follows from (2.6.7) and lemma 2.6.1 that

fW (W~(

Fix . as an Integer in (1,2, . . . , n). Thon, using (?.6.8) we see

I hat f,(U ... , ) is the indicator funct IoU ()t' T)e ,ventI --- "" ' "-n

n n n
: (U ,,( y -()(T TI: ,0) 1 (U I i

IV,(



or, equivalently, in terms of the ranks Ril R n of the T's and

the empirical C.D.F G (,) of the U's, " ,

n

(I (U ) < p(H )/nl <. C (U , ) ,n cI i j n ,

Obser'ving that (Il(k/n) Ulk * k 1,2, ... , n, we f'ind -,.

f J(WI ... g ) is 1 1ff u((lj))- Uj I < c. By the same token., w

f (W . . .  W ) is the indicator of the event U U(I R c. II ' n ((R 1 1)) --

So that fj(W,..., W n) Vnj(pc). From these facts and (2.6.9) it

follows that

I
V l O , C V no , )

nI  n

d (V ( Pr)... V (qc)) (2.6-10)
ni nn , 7

1

Re(caise (cI, . . . . . (In) '.s an arbitrary permutation of 1,2, ... ,.n,

we (onc I 1de from 2 .6. 10) that the summands In (2.6 .6) are exchange *"

'ible random variables. ,

orIIrollar y 2.6.1: The number of correct matches resulting from the ,*

matching strategy qp has the representation

n I
N(,p) 1 1 (2.6.11)

(R 4P(R ))"

ProoF: Set 0 in Theorem 2.6.1. -

We will need the following special dependence structures For

the population density h(t,u). (see Shaked 1979).

Definition (2.6. 1): xch,irigsfabl" random varlable-s T.U are sald to

I

I



pbe positive dependent by mixture (PDM) iff the joint distribution of

T,U is that of g( 0 , l) and g(1 0 , 2 ), where t, and 2 are i.i.d

" random variables, 1O is a random vector which is independent of'

and t2 and g is a Borel measurable function.

NDefinition (2.6.2): Exchangeable random variables T,U are said to

be positive dependent by expansion (PDE) iff the joint distribution 
,

of T and U admits the following series expansion:

IIdH(t,u) =[1 + aln(t)ni (u)I dF(t'ldF(u) (2.6.12)

where F(-) is the marginal CDF of T or U, a 's are nonnegative real

numbers, and [n I is a set of functions satisfying %.

-I n (x) dF(x) = 0, 1 = 1,2, .... (2.6.13)

According to the Definitions 2.6.1 and 2.6.2, the dependence

concepts will apply only to pairs of exchangeable random variables.

Pr It may also be noted that for most of the known expansions of PDE

distributions, the set of functions [nk (-)) satisfies, In addition to

(2.6.13), the orthogonality conditions

where k, t. - 1,2...., and Skt is the kronecker dIpita. I
We now give two 1,xamples to illustrate these concepts '-

dFpendence.

% V

I



Example 1 . : Let F,;) be i A A st andard niormil 1 ratndom

variables. Let p be any constant in the int erval I0. I I [)ef i r- iitw

random variablps

T V, P * Vp 0.

U +I Vp 0

Then, It Is easy to verify that T,IJ are jointly normal and that the

lef'inition (2.6.1) can he applied to T and U with the above rhoice

of k, 0'% anld 2 [fence, the standard bivarlate normal distr~bution

with nonneg-At le correlat ion has the PDM property.

Also, Ma r-da ( 1970 , p. 48 ) givyes the fo 1lowing series expision

' rI h(- Ivurrat e nor-ma 1 (ens It y

k-- Ik

where f(t) is the density of the univariate standard normal randomI

variable and (q (-)) is a set or orthonormal Iermite polynconomials.
k'N

Thus , if p ,0 , b ivarlate normal (ldist r ibut ions possess the PDlE

property as well.

Example 21.6.2: A class of btivariate dlenisti s due- to Far-lie Gumbol

Morg-nif eri 1"; glvon1 b)y the rormula

hWt'l) 1 * X( 1 2t) (I ?,u) ,where 0 -, u < I

It Is easy to check that T and U are PDE for a > 0 in (2.6.16).]

Note that the expansion 2.6.16 has only a finite number of terms,

tinlIIke t he Pxpans lon for Ihe 1) 1var iate normal d ist ribut Ion.1



We now prove that the PDM/PDE structures are inherited by a pair

of new variables obtairned from a given :;aniple by 'ompku Ing the same

function of the margi nals. The:-;" results are gtneralizat ioris of

Ihe( ,rems in "Jhakt-d (11979), whih w ere provd )nily f'or n . Hlowever ,

mathernat ical induction( does not help to show the ruesults for an

Theorem 2.6.2: Let 1 ,2,..., n be a aridom :;amrp1 fromrm r I
PPM parent with density h( t ,u) . Theni, for any measurable furict onr

g -* R, the random variables g(T ,T ,  . T n arid

g(IJlU . . . . . . . U n ) are jointly PDM.

Proof: By hy pot hes is, the vectors ( U) are i. I d , Furthermor, , rrr ,,'-

PDM property Is defined only for exchangtable pairs of random I
yivn [ia/les, w' tve

:'. ~ ~~~~(T. .1 d (Ili ,T ), 1 1, , .. , r ' , )
",I I 1I 1I

Eiat in (2. (.17) together with the lnideperidence of T,II pI:; yl1,;

( . . .. T U1' U ) d(U U 2' ,T T ' I"Urn I ' n T ' N

()ii ier- I ho funet i on K R defined by the eqilat iea n ?

.,

b........... ) (p; . ., , l i I,' ' . I
i ' I i' ' II

V iii?'il i K I I ) l, :;ilia:; Kt I i. ti) I Vid ii'',klti 
'  L.n.n, .' i, v. g -nn .4

Z.%,. . . •



(g(T . T ), g(U U d (g(U U ) (T .. . T I)
1 T n n /. . n 1 n lip

Hlence, (gI(T) g( U) ) is in -xchanigeable pa1 r (,t r emdom vari al e:;

The PDM propert y of (T 11), , ,..., 1In Furt her impl e:; ,

that there exist n i. A. vectors ), i. 1,2,.... n and-I

a measurable 'unct on f such that

Il,

(i) For each 2I, are i.i.d unIvariate random variables

and the vector - iO Its Independent of' kl, and .
iii

(I1) For each j,

T.) f(.l ) and U f(.,O) (2.620)

I ri V rodiwlIng t he random variables,

'211

and

- (. ln k22' . 2n' 01i .On
)  (2.6 .21)

We find that and are I.I.d univariate random variables Fnd F"

is I ndepen(lent of ,- arid - In view of the assumpt Ions ( i) and (ii)

NoT" that (2.6.20) and (2.6.21) imply that

,', . . (

'1' g(T) g(f'( I I ' I. .I n '-On

i is a mea surab Ie I'llriCt n .F, say of .f and F .i mi Iary. g(U) is

also the .ame furntion go f the random variables l a,,d 0 Hence,

by d,,f I nIt I ,n , g(T) trid , l ,(I) ;r, PDM ..-

.4

,st



V ' V . W,,,-. . j.p -j- -

The next theorem is similar to Theorem 2.6.2 except the parent

distribution has the PDE property.

T.
Theorem 2.6.3, = 1 .... n be a random ampIe from a PE 0Thore 2.63: et Ui

P1parent, Then. for any/ measurable funct'ion gA , < he 1rinlmi

vJriables g(T ... , T ) and g(U 1 . U ) are POE.

Proof: Th exc harige*abllity of" trit- joint (listribul i or of g(T) rlwa

g(U) has already ben proved in Th,,)r-sm 2.6.2 ( ;tee equai.i on 2.6. 19).

It r'maiins to be shown t hat , wh-n the Joint (lensity of ea,'h of the nr

CopIes of TU admits ,n expansion of the type 2.6.12, the joint

deItnsity of g(T) and g(U) also admit:s a simt lar expansion. ''-

Assume therefore that there exists nonnegative onstants (ak

and a set of orthonormal functions [n k() } such that the joint drisity

of T. and U is of the form.

1H(t 1 ) 1 F (I )(IF u 1 k a kn i n (1 )  d 6 .
ki k

k I

where . 1,2I ... ,. h

For any real x, define the measurable set in R

7 - A(x) {(x1, X n ): g(x l . . . ,I x ) < . I

Theni, the distrIbut ion f unct ion Q, say, of (g(T) ,g(1))

n
Q(x,y) J 1 .1. J J .. . J I dH(tj u ) (2.6.3),-tc-A ( x ) u (-A ( y ) j = J , .

I!- I [ k t he oxp~in5 , IFon:; 11n -quat I on()r . . 1 we getlS

%

%

,•-,

. # ,. " '. .•4'#',,-,e .-" ' - ' "" ".' "%,", " " " " "r" 
'

' '." " " ' . .'.' # ."."."." "."w ,, # . .# '". . e " "/' , "



N.7 :V. I

144 1

Q(x.y) - Q(x)Q(y) *

-- (1) () l) )

n akxk (x)x (y)
k-Ik k

n (2)

Xa ka tx k (x)x Cj y)

k v1 k 1 I n n k
I n

(2.6.24)

Nn

W r, f - Q( x) H .. J I F( t )

A(x) 1.41

(1)n
xkk (x) n =i k 1 H dF(t n"

A( x) i

* n
xX) j j q (t )TI (t 11 (F(t

kj A(x) . 1 2

and

n n
(n (x) rl n. (t.) 11 dFit

kil .... ,k

.......) Ax A(x) ill i 1,1

(2.6 . 2~ ~ I

Note- that V k 1,?, ... and V 1. - 1,2......,.n the s'igned measureI

induced by x•. k (x) is absolutely contnuous with respect to

S .

Xk,. ,*X)t abouel otnuu . epc to AAQ .,~ A~'' di"



'.'4

so that there exists (0 (x) the Radon-Nikodym derivative

of X (x) with respect to Q such that

x(9.) (9.)

Xk . . (x) = " l . (t) dQ(t) (2.6.26)

Hence, from equations (2.6.24) to (2.6.26) we get

OD.

. dQ(xy) - dQ(x)dQ(y)[l n a 4 (x) 4) (y)
k k k

'% k=1 ~ x

n [ ak  a ,(2) ) (2) (Y)

2 kl=1 k2I kI k 2 k1'k 2 k'k 2
1 2

+ a .

VV

, a l .. a ki4 ....Ic ( x )4s k .. ,

Ici Ir '' n 1.
1 n

(2.6.27)

Represe rtation (2.6.27) holds almost everywhere (Q measure) becau:;e

Radon Nikodym derivatives are defined up to sets of measure zero.

Also, the coefficients in (2.6.27), being products of the n(innegativ,.

"" a s, are themselves nonnegative. lience, to complete the proof we

only heive to show that the orthogonality conditions (2.6.13) hold f'()r-

t he %i s of the expansion in (2.6.27)

For t :1,2, ... n, and 1 < kl , ki. < %

we have

-- 4,

'P -,"P_: ." 'l 
"

' ,.-' ' , . ."L' . 'J , .. t, .. ,,. W",.t,, . ,,..< ,,., . .. 't,¢ >



P'.. MO -P .-P -. 4 r. -. P - ri "% -J- r'vru W-- -

k, k,

(9,)

Im (X) x

a4 ~) 1. n,-

- .. f H nk. (t ) 1 dF(t
-co ii i 1 =

on, ,, co nf] k I -~t I I RI k (t P dF( t) 4.-

1..m 1 2 1 12

Hy hypot hesis nk(" )I are a 5etl of orthoriormal funct iois on the

rmar Ir ia z; b ti io I - o f T so that

n k (t dF(tI = 0 (2.6.28)

a",

Hence, J 4(' (t) dQ(t) 0 (2.6.29) ""-

where 9- 1,2, 1 "2,i

and this completes the proof.

The following facts about. blvarlate ranks are easy consequien-s

()f The(r 'rns 2 6,2 and 2.6. 3.

Tj

:,)r')] I ary 2.6 .1 I't. be a random sample from a PDM (WDE)

p,,r rit ('()11:; l Ir- he r rg I ri ; I ranks

T~ ;

,-A r 1 (1% %%V%

a rid

!p.



DM DE,=1 ,147
n R

R21 1(U >U

of T and U respectively, where 1 1,2.....n. The pair Rl i

IPPDM (PDE), i = 1,2, ... , n.

Proof: Fix i and define a function g: R R by the equation

n
9 (a,, ... a ) =

n (a.>a)

and observe that

RII g K(TI, ... , Tn) RP g(Ul ... I U)1

By invoking Theorems 2.6.2 and 2.6.3, the result follows.

We need one more result before we establish an opt imal Ity propi-rl y

of (p".

TI

Theorem 2.6.4: Let random vectors ( i), 1 1,2 ...... n, be PDM/P)E
N U1

and denote the ranKs of TU I among T i 's and U s by RR respec

tively. Consider the joint probability mass function

ir. * j .. P(R11 = i, = j), 1 < i, J < n

o& R1 and R 21. Then, ff' *s satisfy the following ins-qual il i',:.

V ., . > ?TJ (,.6 1)

Proof : By Nypo)t he:; i s, the parrnt (I st r I but I on 1:; [)M orPDE. 'o

V.:'.'t rig to, Corollary 2.6. 1, H anid P are also 1'DM or" PDE. Corise+
". 1 1 2, I

,j,'ent ly, RII arid R are exc'hangoable random variables. Hen'e ,

HL, % Y,

C,' C

", , - ., ', ',2,,,. ., ., ' ,' , *, o', ,%3', ..- "'.', ,
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T4) -stabl I sh 2.h. 30) , fl rst (-(rsdfr Lthe case when T ;i t-d I art I [1M

By Theorem .6.2, I- and R2 are PDM. Hence, there , x a

distribution function Q(.) say, such that ,

,
J t. j .(t) dQ(t), 1 1, j ).3'

where nj.(t and n.j(t) are the conditional mass functions of Rl,

and 1? , given a value t trom the Q d stribut ion.

t l,'o ows fro.;m eqtt. ion (2.6.32) that

%"

2I 2
if t l. t 1T t2D t i

- .

-I

I f' , (t ) r ,(t )) d Q (t ) %N

Wi, t hsI s bt n 16 30 ) when T , U are PDM .2 uppose now that T irirl U 1"40

are PD[E . Then by vi r ue f Corol lary 2.6. 1 , Pl ind R2 would he_

PDE. F and R a r ra-niks That are bas(-d on Iniidepeniden t r'aind4)m

vac lah ';, h- n'ce R arnd R are both discrete ilfo)rm rand)m varlabies

on I 112... ,. ( ,me Hanldles and Wolfe (L979), p. 8). h

As R and R have finite supports the series expansion of R

and R will have a finitte number of terms. In fact, Fisher's .

I

I:
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identity (see Lancaster (1969), p. 90) holds:0

. i e n t t y ( e e a n c s t e r ( 1 9 9 ) , p . 9 ) h l d s
n. n n , J

p -, t J = n nk -- l : "

where tak) are nonnegative constants and Ink(-)) are (rthogonal

functions on 1,2..., n. The representation (2.6.33) leads to The

following reasoning:

For 1 < i, j< n,%

." nn-i

1 2

k-KI

n-i n nI
a( k ( )) 2 k 2l k (ink (j)j

k=1 k-I k

> 0 (2 . , 34, .

4. Hence, we obtain the Inequalities in (2.6.30). An uptimality of

property T" can now be established:

aTheorem 2.6: Let (U), i.l,....
There 2.6.5: Le i=,2 n be as in Therevm 2.6.4.

Then, V p (p @,

E ( N ( o ) ) .- ( N ( ,p ') ) ,t, P',6 J

#%-

/-%-

ad:

- -w ' . . . . . . . . . .. . a
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Proof: In Corollary 2).6. 1, N((p) was written as a sum or ex('hari,,ttl, l

indicator random variables. Hence, using equation 2.6.11, we vet

E(N(p)) - (2.6.36)

n -

n I P(R - qp(k), R k)

k=' 21

n

=n X Wk-l k,(p(k)

where i Is the joint mass function of RII,R?!. Invoking the

lneqiallteos on n,, In (2.6.30) we obtainx"i
5,

E(N( 0)) < n 2 (W kk + Ir (k),y0(k) )12

n n

2k kk k=l ), (k),((k)

n IT

n P(R R
21 1

1:( N ((p")

Wh I 'h yst abl Ishes thfe de's Ired result. "

To interpret Theorem 2.6.5, we first recall from subsection 2.4.2 .. ,

that y0" = (1,2, .. ,n) is M.L.P if" the parent density has the

21 ii

IN. C'

%,



- ~ ~~ -.. .. . . . . . . . - -

monotone likelihood ratio (MLR) property. As demonstrated by Shaked

(1979), there Is no general relationship between PDM/PDE concepts of

positive dependence and the MLR property. We can therefore state the U
optimality of y" In Theorem 2.6.5 as below:

Let T,U have a joint density that has MLR property. In addition,

let T and U be either PDM or PDE random variables. Let x1 , ... nx U)'
yI' "'''Iy be a broken random sample from the T U population. Then

the M.L.P y* is an optimal strategy to match the x's with the y's

in the sense of maximizing the expected number of correct matches. I
2.7 Monotonlclty of FtN( y ))

with Respect to Dependence Parameters

Repairing of broken random samples based on the available data

in two files was discussed in Section 2.4. It was observed that

data based optimal matching strategies exist when data come from ,,

populations having certain types of positive dependent structures. a

It is therefore reasonable to expect an optimal matching strategy to

perform better when there is some kind of positive dependence in the

population than when the data In the two files are stochastically

Idepmedent. Our objective In this section is to present a pre(:.e

ac(oint. of such Intuitive results with regard to the, maximum l Ik] ".

hood pairing p". To this end, we will draw upon the results of I
Section 2.6. We begin with a definition from Shaked (1979):

Defni tion_ 2.7.1: Let J be a subset of R. A kernel K defined on JxJ

is said to be ronidlt lonally positive definite (,.p d) on ,xJ Hff 71
6.

%I
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(1) K(x,y) - K(yx), V x,y C J; that is K Is a symmetric kernel.

(tI) Let m be any positive Integer. For arbitrary real numbers

a,, ..., a and for every choice of distinct numbers x 1 , ...

x from J, It holds that
m

m m m

) Y K(x x) aa > 0 whenever a 1 .0 (2.7.1)

It is pertinent to note that this definition is related to the

well known concept of a positive definite kernel, which is used in,

among others, the theory of characteristic functions. The nonnega
m m

tivity of the quadratic form K(xi x) a a without requiring %

m i , - ,

the condition X a 0 In (2.7.1) is a standard way of defining

positive definite kernels (Widder, 1941, p. 271). We shall now give

Fan example of a c.p.d kernel which will be used In the sequel.

Example 2.7.1: Let J 11,2, ... , n), where n is a fixed posit lye I
int-gr . To verify that the kernel K(x,y) - (x=3) Is conditionally

positive definite on JxJ, let m be a positive integer. For arbitrary

real numbers a,, ., am and for every choice of distinct integersmU
m from J, we have

m m
X [ K(i I ) a a

1 B-I

Sa a
Cr'IIC
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> 0 (2.7.2),

where we have used the fact that, In view of the inlegers I....
In

being distinct, I-i I If CL=B.
~m

Note that we did not have to impose the condition a 0 to

II
arrive at (2.7.2). Also, the function I(x=y) is clearly symmetric In

x and y. Hence, it follows from (2.7.2) that K(x,y) is positive

definite and, consequently, Is also c.p.d.

We will need the following lemma.

Lemma 2.7.1 (Shaked, 1979): Let T and U be PDM or PDE random varl

ables with joint distribution function H(t,u). Letting F(-) stand

for the common marginal distribution of T and U, define H (t,u)0

F(t)'F(u), the distribution function of T arid U in the case of

independence of the variables. Then we have the ordering

E H(K(T,U)) > EH  (K(T,t)) (2.7.3)

H0

iff K(.,.) is a c.p.d kernel, provided the expectations exist.

P. Theorem 2.7.1: Let the joint density of T,U have MLR property

(2.4.4). Let H ,H be as in Lemma 2.7.1. If N N(y") is the number
0

of correct matches due to the M.I,.P (", then

S.-, E (N) > I. (2.7.' )

F.
.5
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Proof: It follows from the general representation of N((P) in

e-quat ton (2.6.11) that.

F (N)z n P(R - R nzfE ((K(R R ))(2.1T2))
H H 11 21 H I1 I21

%P2

where K(x,y) =I .Now, recall from example 2.7.1 that K(x,y) is
(x~y)%

c.p.d. on the domain JxJ, where J = {l,2, . .. , n} is the common

support of PH1 and R 21 It was established in Theorems 2.6.2 and

2-.6.3 that H 11and R Piare PDM (PDE) according as T and U are PDM

(PE). Inrvok i rg Lemma 2. 7. 1, we therefore obt a in

KEH(K(R lit R2 ?)).E H(K:R ]I R ) (21.

Under 110. Hi11 arnd ~ 1?; zire i rilependerit . Also, these ritnks are

marginally discrete uniform random variables on 1,2,.. n. Hence,

we get

EH (R 1 1 ' H2 1 ) H ( 1 1 = 2 1)
0 0

n
YP(R k) P(R -. k)

k 11 21

k-i n

1/n .(.7.7)

Equations (2.7.)) t,- (".7.7) imply the desired Inequality:

E H(N) n n .[



We conclude from (2.7.4) that p provides, on the average, more11

correct matches when the data in the two files come from certain

positively dependent populations than when they are Independent. In I
part icular, this fact holds for the bivar late nor-mal (listribut Ion

with positive correlation as well as for Morgenstern distributions

in Equation (2.6.110), where the dependence parameter a > 0. 1In t he

light of Theorem 2.7.1, it Is natural to conjecture that- E (N), its a
H

functional of the distribution funiction H, Is order preserving with

regard to certain partial orderings of the space of all continuousA

bivariate distributions which have fixed marginals (those of T and U,

and exhibit positive dependence. Although no proof of this conjec

ture is available at this time, we offer Further evidence in support4

of this conjecture in the next two theorems.

The-orem 2 . 7 . 2: Suppose I hat a brnke-n rarimi !;;AmpIe co(mtes f'rom t lit

fiamil y of denis It 1los given by the equation

h (t ,u) I 1t It) 2u) , 0 < t, u l and 0 'I(7)

Then, Ea (N) is monotone Increasing in a.

Proof: Note that in (2.7.8), a -0 meanis T anid U are independenit

and we might say that the farther a is from 0 the more the positive

deopenidence between T and U. For this family, the marginal distribu

iOtis )f' T ti(I U are on I Formot

It I ol I ow,.; f'rom -elitt i n (2. 6. ?7) ;011(l (oI I iry I tu I lt.e

pd nt probitbIlity t'orv-1 1ri of lh# r;ks R irid R,, Io ell ' cairionl
.;Al y t- parded Is ()1l w';

*~ I ~j ~p~1I(1e1 ~t Voloil~

- - %

.0. V.
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3

111

I R

n n k

k I

whre * Ij. n and In (_)}n Is a set of' functions satisfy
k 1

,"

rig t he )rt hogonal Ity conidit ions in (2.6.13). Using the expression

'/..F 1'o) r Tr wH 'get

. 1W

E(N) 1 R( 21- i i 21]

n n

nn

1k

-h e I . , 2 . . an n k-)} n k(' )'

4 k. :(f)bkO (2.7.10),
k-i k

where, after change of the order of summat Iofl on I and k, we have

if rio rinega t Iye (orst.t n t s b given by the equate ion
k

n

it follows Iron (2..10) that Ea (N) is a polynomial in a and hence

It incrases with x, as a goes from 0 to 1..

Theore-m 2.7.3: Suppose that a broken random sample comes from the%

-. *

%I

biv:; iat n(,r n a (tve istribt ions given by (2 6 1 ) wher equa assume

nS

t,( > ( nk ~ ) 
?  ,? , . n - ' ,

-- *I* ,"' J.
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that the correlation parameter p is nonnegative. Then E (N) is
P

increasing in p.

Proof: It follows from equation (2.6.27) and Corollary 2.6.2 that

Uj P( 11 1,R21

k a)n2 k=l kk

co a

n 1) 2 (2) (2)

k =1 kc 1 1 'k' 2 k~
1 2

n (n) (n)k , k n K I kil k n k k k 1

(2.7.11.)

where, for fixed % - 1,2, is a set of ort.ho
k1  . .. k

n
gonal functions on {1,2, )..n Using the expression (2.7.11) for

ir.., we obtain

.. K (N) - nP(R R )-

.
S.|

• 5 5.

..



r n

n k- x .:

k ,

n 02 n

+ P X- I1

k2~ k<: ~ k'2,-;, i<

. . !. 't.

n ,, p Z i . j (1) () ..2 ( )k k11 kk I n 1-2

co c o n 2,

(2.7. 12)

where t he orer of summations over I and k , k. have been.--

rvredO t ' USe I hf: te-[MS in the expans Ion (27. 11 ) are all nion

ne~gat ive. We conclude from (2.7.12) that E (N) is a polynomial in,-
P

p and hence It Increases with p as p goes from 0 to 1. El 4

As we close this section, we shall state a result due to Chew

(1973) which so mewhat resembles, though conceptually dif'ferent from,. .

the inequality E(N) -, I in (2.7.4). Recall the notation M((p) In"

matcthes duie to the strategy (p.• Arguing that M(q)) I when (p Is

r'and(omly chtoser. fromn @ , he proved the following result:"

Theorem 2.7 .3: (Chew, 197-1): I,,t x l , r i d y ' ' yn be a

Ti n

broken radndom !.ampIef Ftr(,m iA bI t i r I-at" d(i s t r-i h, i, l ,)ssess ip, mono

tone likelihood ratio. I x I < X and yI <  < Yn' then the

4%

%~ (L n



posterior expected number of correct pairings using the M.L.P Is-

at least unity, that Is

MO(P) > 1 (2.7. 13) I
It should be noted that the inequality (2.7.13) was derived -

from a Bayesian perspective, whereas in our inequality (2.7.4) the

expectation is over all possible samples. Finally note that while "I

our comparison is between dependent and independent populations for -

the M.L.P., Chew's inequality compares M.L.P with random pairing.

2.8 Some Properties or _N(py"c_) 1
The maximum likelihood pairing, (p, was Introduced in sub

section 2.4.2 and some of its small sample properties were studI,-1

~~~~In Section 2.7. Specifically, the behavior of E(N(( ') ) was d .;'';. d '

while holding the sample size n constant and changing only the dgru,.- '

of dependence in the population. We shall now fix the parameters

Tdescribing dependence in the population of (U) and allow n to tend to

infinity in order to study the behavior of N(q*",c). Later, in this '

section, we shall present the results of a Monte Carlo study about

N(p p,c) in which we vary the dependence parameters even as n lakts

dif f rent values.

In this sect on, the notat ions of Sect ion .2 will )e Ii:;E(d

f'reely. Focall that N( ") and N(p ,c ) have the short,,r not.tl()ns N .

and N(r) respectively. We start with a re'iew ()f Yahv (198P)'s

rPo, ilts concernIng E(N( )).

'I..,

S.'ter p
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Assuming t hat tihe (istribut ion of T arid i Is such triat I he ,'oi A,

(litional dist ribut Ion of U glven that T t is (univarlate) normal

with mean t and variance 1, Yahav (1982) derived the limiting value

of jn (c) - E(N(c)/n), as n , by using the representation (2.5.2)

in which the summands are functions of the order statistics of

l 1  . ,i arid the concomitants of the order statistics of

T l , ... , IT. HIs proof relied on an approximation theorem .

(Blckel and Yahav, 1977) about the order statistics for the above

mod I Furthermore, he reported the findings of a Monte Carlo s udy

For a p;irti clar case of" his model, namely, T and U are bIvariate p

norm ,il wi h ,',rre-at ion p.
',

FIrst, we discuss the large sample behavior of N(c)/n in case of

samples from an arbitrary population. The properties of its expected p

value are available as a consequence. Second, we indicate

how Yahav's simulation study of the small sample properties or n(

c.an be-# improwved upon. We shall then present the results of our own

Monte Carlo study of vi (c) when n Is small. ,%

Theorem 2 .8. 1: For broken random samples from an absolutely _
,',hi++, o~s l -; t' bt <),.N(.) pr

()inois istrihu l r)) as n , (2. .2

whe+re + u , I P(F(T ) U((J) F(T+ ) .

Proof: Let L. N) Recall the representation (2.6.6) for N(c) as ]n n "( '-

a sum of exchangeable ind icators ,

n

N(c) I A  (2.8.3):11-1 ni (  . ,

* - - * ** ~ %~ * '~ %'.% ~ ,,j,.' ,w N ]
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It follows that

E(L ) nP(A (c))/n P(A (c)) .(2.8.4)

n n1 ni

Note that,I

E(L2  n2 [E(N(c)) ()+ E(N(c))), (2.8.5)]
n

(2)
where E(N(c)) Is the second factorial moment of N(c). 11Jiing T-fe

exchangeable representation (2.8.3) again, we get

E( t. n [n P(A Cc )A (c ) rP(A (2)M

n nI n2 nI

n
Let n~ I. 10

n 2. 2 '~ a =1,2... .. n,(2 . )

where the sqences an ar deie in (22.12)

Using (2.8.6), we get

A ( n /r n <0, nI/n < 0) (..(
nii

2 2
A (WA (C) (I n (ni /n < 0)(..)ni n2 I I~

K:%wV



Note that, given W1 ( ), the infInIte sequence

U1  ..

i1 ' 13' .... ad inf..-.
112' 113'adn.

;xuharigeable. Hence, by 1he S;t'ung Law of' Large Numbers ( ;IIN)

futrt -xcha.igeable random variables (see Chow ard Teicher, p. ?23),

ni * .(t l 1W ) W as nl (2.8.9)

wherbeT ' cndIt Ional expet, at iun is e qual to F(t c) G(u ). It

f.')llo(ws frr.,m (?.8.9) that

'A* s
rI/n F(T c) (U( 1  ( .8 10 ".

* ,n ).h )w by s rnllar a rgureits hat " -

S /n F ( ( I )2 8 1l -

on J li(it ) geT c ( ) ,2.8.1)

,4 ,r•  ,2 . .

I':;i;) 'i ' "1<''t- ( :,'" .Thrf 1 i g 19 't ,O p). %) th,h l a s-, qi, erl (',, ( if * )"",:.. %,,

v,'T,,u:; r',rvrge:; a I nu:t :utire_ by It a] given[ V -:.or" Clf the c',mporent '*

wi.se :Cle~ui 'es ,onver'ge almost surely to the appr'opriate components - .

off the limit, we get from (2.8.11) and (2.8.12) $ .'

I,.

%

'-



n F( WO

a S"

TI T2

91".1

rl/n and ( G ) T tha)t

-t (2.8. 13)

d/n

(2.7)2(/8.), G(U 2 ) F'(T2+c) i-

22 W 2 

It follows from (2.8.5), (2.8.8), (2.8.13) and the independence of 

dand (U2 ) that

'-5 0
II.)'p

dnd

Th#-,, FS [ I lo i io~ ll !y g le aIIz-s Yta 11 - ;jIIre

t( ti f I rs m m nt XN)r

vroIIar(L ? 8 0 I orp

5-I

It . (c)A.l k~w Ct)) ( c~ 6 ~i :(h, ',?v) pt~',In ',,, 'h V4"4',

'.4

and (2..,'8..16) "

54, Pp.

n , C 2lar 2 . 1 Io -

Th o oigrrllc gnrl1zsYta M2)rNi Ius-r i

~ ( ), th firt moent f NU) .n

• -",..."." _,"n.()" " l"a_, "." . . 1 1+,m ..,Z+J' -o p ", - . . ,""""","#"," % "•". ," ,"• - . ' ;.,.,, . .
x _, = +.++ , ,,- -, ,+r, ', + . +t ,_ " " ,, ",/ % ' " % " "" ' ,' t',N' ' '-_ ._' ', ,. ,,-, , " ," ,, . , , ,
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(t) N[ _ r )C),as rI , ('.8.11)n j.

i ) E(N(1 )/n [ 1 H P as n ,. (2.8.18)

Proot The number of' correct matches C(an at. most be n, I he

imr ) f - ' (X pa rs In the riobserved bivariate data. Hence

0 . Yt V 11 1 . .
,I

In other words, tN(c)/n} is a uniformly bounded sequence of' random

variables. It is well known that convergence in probability and L
PA

,'onvergence are equivalent tor such sequences. Hence, (I) is an easy

,'nseu(ti, rce of Theorem 2.8.1. It follows from (I) and Theorem 4. .4

t.h
,,t" (:hilng (1)714) that the p moment of N(c)/n converges to

( )J|] . Hene (ii) also holds. f

Note t hat no assunilpt, Ion about the cond It lonal distribution of U.

g evor T was made t-i th ,r in Theorem 2.8.1 or Crollary 2.8. .

ahav r,,ve rated scamples from a bIVarate normal parent wi I h m#,ari

Ve(l u r (0) and covariarice mat rix

2 2 2 27 p-I(1 p2) p /(l- 0)

(2.8.19) .

P1(1I p;) 11 p ) /

Note that In (2.8.19) the variances of T and U are functions of" the

(:orrelation )f' T and U becauske Yahav requires that the coridit onal

distribution of U given T t be normal with mean t and variance 1.

-.4

F .,15S
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The limiting value of n (c) for his particular model was given by

the integral

comute =jc by x¢ -  x * '

p(c)) - - )} d§(x) (2.8.20)

He computed V(c) by numerical integration for c . 0.01, 0.05, 0.1,

0.3. He also provided Monte Carlo estimates of pn(c), for n 10,

20 and 50 using the simulated data on T and U. The following table

is a tvpical ex mpl, I rom - lis t h:ih ,l .

Table 2.1 Expected Average Number of
c-Correct Matchings, c = .01

(Yahav (1982))

U[O(0 u20(c 50( u

.01 .5864 .5326 .52752 .52269

.01 .1984 .1648 .12712 .11522

.10 .1512 .1058 .07600 .05912

.30 .1084 .0686 .03888 .02144

.50 .1020 .0582 .02720 .01382

.70 .0960 .0614 .02616 .01051

.90 .0972 .0540 .02064 .00864

.95 .0976 .0496 .02144 .00829

.99 .0960 .0484 .02128 .00804

It is clear from Table 2.1 that pn(c) and p(c) are decreasing

as p ranges from 0.01 to 0.99. However, one expects that an optimal

strategy such as v" has the property that p (c) as well as p(c) are

monotone increasing in p. The problem here is not with the M.L.P,

p, but with Yahav's model in (2.8.19) because, as the correlation

% % %°%
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m-hanges its value, so do the marginal variances of T arid U. To

rectify this problem, we assumed a bivariate normal model Cor T arid U

In whIch the means were zero and the covariance matrix was

p] ,K(1-(.8.2l) 1. .:

For each combination of four values of n, namely 10, 20, 50 and 100,

and twelve values of p, namely 0.00, 0.10 (0.10), 0.90, 0.95, 0.99,

a sample of size 1000 was generated from the bivariate normal popula-

tion using the IMSL subroutines. These data were used to obtain

Monte Carlo estimates of ( Cc), where c was given the values 0.01, _

OC5, 0.1, 0.3, 0.5, 0.75, 1.0. Furthermore, it is easy to show w.

that, for the model in (2.8.21),

:-i( ) P(jZj < C/VM P-Y). (2.8.22) "

where Z )s a standard normal random variable. It is clear from

(2.8.22) that P(c) is a monotone increasing function of p. Using

standard normal CDF tables, P(c) in (2.8.22) was computed for each :

combination of the twelve values of p and the seven values ofc

mentioned above.. We have presented the estimated values of Vn(c) '

and the limiting value u(c) in Table 2.2 to Table 2.8.

A1.

SI
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Table 2.2 Expected Average Number of

c-Correct Matchings, c = 0.01

P 1 0O ( C )  u 2 0 )  5 0 1 ( ) 1 1 0 ( C )  ( C )

0.00 0.106 0.054 0.025 0.015 0.008
0.10 0.113 0.059 0.028 0.017 0.008

0.20 0.127 0.068 0.031 0.018 0.008
0.30 0.138 0.075 0.034 0.020 0.008

0.40 0.155 0.083 0.038 0.023 0.008
0.50 0.174 0.095 0.044 0.026 0.008
0.60 0.199 0.109 0.051 0.030 0.008

0.70 0.231 0.129 0.061 0.036 0.008

0.80 0.279 0.162 0.077 0.046 0.016
0.90 0.374 0.222 0.109 0.067 0.016
0.95 0.476 0.296 0.151 0.094 0.024
0.99 0.700 0.521 0.299 0.191 0056

Table 2.3 Expected Average number of

c-Correct Matchings, c 0.05

1P 0 ( C )  120 (F )  150 ( C )  100 ( C )  P(C)

N.N

0.00 0127 0.076 0.07 0.037 002

0.10 0.134 0.082 0.051 0.040 0.012 U
0.20 0.149 0.093 0.056 0.043 0.032

0.30 0.161 0.099 0.061 0.047 0.032

0.40 0.180 0.109 0.066 0.052 0.040
0.50 0.201 0.124 0.074 0.057 0.040
0.60 0.228 0.141 0.085 0.065 0.048
0. . 7 0 0 2 6 2 0 .1 6 6 0 i 10 .0 7 6 0 0 4 9

0.80 0.317 0.205 0.124 0.094 0.0614
0.90 0.420 0.280 0.174 0.135 0.088

0.95 0.529 0.368 0.237 0.186 0.127
0.99 0.769 0.631 0.459 0.377 0.274

°- - - - -.-. --'.--.
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Trab 14 2 14 Ex p. ('t ed Average Numbo r ()I'

L Correct Mat chlngs L O. 1

p PlOC) CP20c p50 C 10() i c)

0.00 0.154 0.102 0.075 0.065 (.056

0.10 0. 160 0.110 0.080 0.069 0. 056

0.20 0. 117 0. 121 0.087 0.014 0.064

0.50 0.I_89 0. 110 0.013 0.0)90 0.080; .
0.30 0. 189 0. 110 0.093 0.080 0 .064
0 .40 0.210 0. 143 0. 101 0 08,8 0.02-
0 90 0. 23/1 0. 161 0.112 0.0146 0, OllO

0.60 0.264 0 .181 0.127 0. 108 0.088

0.10 0.30? 0. 2t 0. 149 0.126 0.103 rp

0.80 0.363 0 .2 8 0.182 0.154 0.127

0.) 0.477 0 .3 47 0 ,54 0.218 0.171 l

0.95 0.594 0.452 0.342 0.299 0. 51

099 0 . 839 0.7/. 0 6A( 0 .)80 0. )2

Table 2.5 Expected Average number f)f
c Correct Matchings, c 0.3

CcVO() .?O(c) vSO(c) lO ( ) u - "

t0 20 50 100 '

0.0 0.255 0.208 0.184 O.1/5 0.166

0. 10 0 .265 0. 223 0. 195 0. 186 0. 174

0.20 0. 2;8 0.,' O 0. 07 00191. 190

0.10 0. 1)5 0 2,)3 0. e?1 0 211 0. 1W

0.14 MOAAt) 0. "15 0.240 0. ;9 0.213 -

0 .)0 0 .33 0. 30 0.263 0.250 0. 236

0.60 0.401 0.336 0.293 0.278 0./66 7-

0.70 0. 45 0. 382 0.337 0. 120 0. 303

0.80 0.532 0.457 0.403 0.386 0.362 -

0.90 0.670 0.593 0.540 0.519 0.497

0.95 0.802 0.733 0.689 0.674 0.658 "

0.99 0.978 0.968 0.961 0.961 0.966

ir



Table 2.6 Expected Average Number of
c-Correct Matchings, c = 0.5

P lO(C)  Ii0 (C)  )S0(C)  l00 (C)  P(C )

0.00 0.353 0.311 0.290 0.281 0.274

0.10 0.367 0.330 0.306 0.298 0.289
0.20 0.390 0.348 0.325 0.315 0.111
0.30 0.417 0.371 0.344 0.336 0.326

0.40 0.452 0.400 0.373 0.362 0.354
*- 0.50 0.485 0.437 0.404 0.393 0.383

0.60 0.528 0.478 0.446 0.435 0.425
0.70 0.591 0.536 0.506 0.495 0.484

0.80 0.675 0.628 0.594 0.584 0.570
0.90 0.811 0.773 0.752 0.744 0.737
0.95 0.917 0.896 0.888 0.885 0.886V 0.99 0.998 0.999 1.000

0909

Table 2.7 Expected Average number of
c-Correct Matchings, c 0.75

(P P i C)V( c

0.00 0.468 0.433 0.416 0.409 0.404
0.10 0.488 0.454 0.437 0.429) 0. 42')

0.20 0.514 0.477 0.461 0.453 0.445
0.30 0.539 0.505 0.487 0.480 0.471
0.140 0.582 0.542 0.522 0.514 0.503
0.50 0.621 0.586 0.560 0.555 0.547
0.60 0.662 0.633 0.613 0.606 0.599
0.70 0.727 0.694 0.679 0.673 0.668
0.80 0.810 0.786 0. 772 0.768 0.766
0.90 0.919 0.908 0.906 0.904 0.907
0.95 0.979 0.976 0.978 0.979 0.(;2

,, 0.99 1.000 1.000 1.000 1.000 1.000

)%

" .4'



Table 2.8 Expected Average Number ( )f
Correct Matchings, c 1.0

P 1 ) 2 0 1c) 50 10c)

0 00 0.170 0.5145 0.531 0.524 0.522

010 0.1)93 0. 566 0.555 0.5149 0.547 j
o .0 0. 6"'1 0 .95 0.581 0.576 0.5"70
0 i0 0.646 0. 622 0.611 0.605 0.605 ,
0!qO 0.690 0.664 0.650 0. 644 0 .627

0. 50 0.7119 0. 107 0.691 0.688 0.683

0.60 0.77? 0.753 0.744 0.741 0.737

0.70 0.830 0.812 0.807 0.805 0.803
0.80 0.898 0.889 0.887 0.885 0.886 , ,

0.90 0.970 0.970 0.972 0.972 0.975

0.95 0. 996 0.996 0.997 0.997 0.998 .
0 99 1 .000 1.000 1.000 1.000 1.000

I

Note that, as expected, vi (r) is a monotone increasing function

,)f p for each fixed c. Furthermore, the qualit.y of the merged file is

quite good if we want to recreate contingency tables with

intorval of size .5o or more and the correlation p is > 0.5.

-°

.. .-:
%
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i 2,9 Poisson Convergence-of N(eo'

Let us revisit, for a moment, the card-matching problem which

was discussed in Section 2.3. Some of the distributional properties

of the number of correct matches in randomly arrarging one park ()f

cards against another were stated in Proposition 2.3.1. In part Ic

ular, the well known approximation of the distribution of the number-J

of correct matches by a Poisson distribution with mean I was

S'mentioned This Poisson approximation may be motivated by the

observation that the occurrence of a match tends to be a rare event

when the number of cards in the matching problem grows indefinitely.

% Inspired by this result, it is natural to ask whether Poisson distri

butions can approximate the distribution of the number of correct U
matches due to data based matching strategies. The answer is in the

affirmative In the case of the maximum likelihood pairing y". Our

aim In this section is to establish the Poisson convergence of N(p").

Using the general representation in Corollary 2.6.1 for the

number of correct matches, we can write

n
N N(p-) = 1 A (2.9.1)

1-1 ni ]
V

where Ani = (RlI = Ri), i 1,2, ... , n are exchangeable events. It

follows that E(N) nP(A ) Zolutikhina and T.atishev (1978) ."

sketched a proof of the fact that the expectatio)n of N c)niverges t) a

c(nistant as n tends to ,n Their approach start; with wrt itri P(A ,

..

as the triple integral '5.

Vz 6' ,e ci



0 0.

where~~~~~A -.~,)- (~ )cs0

I I.

CL Jhx( J exp[(n ()9.n (xy))Id (2.9.2)

3 1 2'

p(~) da

convegethe wel kno thod Poso Lalce(disteioinh man andesa

We5) bheyi exptde ths iteralion powst f anhcncrdeathts

R(A fo lRrle .. n, whr arhe R R onst' n r Ivrant undegverb

"INV
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where F(G) is the marginal distribution function of T(U). This so-

called probability integral transformation allows us to assume that

T and U are marginally uniform random variables and that the parent

CDF, H(t,u), is the joint CDF of F(T) and G(U). Furthermore, the

integral (2.9.2) simplifies to a J h(x,x)dx. We might recall
0 I

from Section 2.2 that this simpler version of a was called K. We

shall henceforth use these simplifications and seek to prove that N 0

weakly converges to the Poisson distribution with mean K.

Following Schweizer and Wolff (1981), the joint CDF of F(T) and

G(U) will be called a copula. In general, a copula is denoted by the

symbol C(...) and the following Frech6t bounds apply to any copula: %

max(x+y-l,O) < C(x,y) < min(x,y), V (x,y) E [0,1]2 (2.9.3)

However, for the purpose of deriving the distribution of N, we shall

consider only a part of the spectrum (2.9.3) of all possible copulas.

To motivate our choice of the copulas, first note that, in this 0

chapter, only absolutely continuous joint densities are allowed for

T and U. This means that the extremes min(x+y-l,0) and min(x,y) are

ruled out because these copulas correspond to degenerate joint

distributions for T and U (Mardia 1970, p. 32). Second, Goel (1975)

has observed that y' = (1,2, ... , n) is M.L.P iff the joint density

of T and U has the M.L.R property. However, M.L.R property neces

T
sarily implies that the distribution function of (U) must be such

that C(x,y) > xy, for all (x,y) in the unit square (Tong (1980).

p. 80). We shall henceforth assume that the joint CDF of T and I will S

% ""%
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satisfy the inequalities

xy <_ C(x,y) < min(x,y), V (x,y) E_ [0,1] ('.9.4)

Note that, in (2.9.4), T and U are Independent 1ff C(x,y) xy.
I

Positive dependence of T and U occurs when C(xy) xy, for all x and

y. In the remainder of" this section, the joint CDF of T and ) will : I

be a copula C in the class (2.9.4) and the corresponding joint dtrnsit.y

function will be denoted by c(x,y). IN

Since R 1 and R2 are some permutations of (1,2, ... , n), we find

it convenient to use the notation (p for realizations of R or R

The common support of R and R is denoted by $, the set of n!

permutations of 1,? ..... n. ii
We will now formally establish an equivalence between the card matching

I

problem and the M.L.P in the in(lependence case.

Prq)osltion 2.9.1: Iet T and U be independent random variables. IX

Then the distrlbution of V = (V ... ,.V ) defined In (2.?.0) is
- nl' nn

the same as that of the vtector 6 E (6 ... , I ) where P
- l' n

n )' -1 1,2, ... ,. n (2.9.5) ..ni (R i ]

Furthermore, the random variables 6l.... 6n are exchangeable.

Proof: Note that the rank vectors

S-- (RI1..... "In) a d-2 2 (R 1. .... R2n

are independent because T and U are, by hypothesis, independent

random var lab e:;, and I hat RI and R2 are dlscrete irnifform on o.
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That is,

P(R q,) - V p E t and c = 1,2. (2.9.6)

As Vni'S are indicators of" the occurrence of matches, the

Bernoulli variables 6 . . i n (2.9.5) can be looked upon as
n I nn

indicating whether R matches with I or not, 1 1,2, ... ,.n. It is

clear that the common support of V and 6 is

n

A [(a I  .... a ):a =0 or 1, I=1,2 ... , n, Z a i  s n l}

1 n 1 isl(2 9.7)

-. Note that A has 2 n n sample points.

Let a = (a, ., a ) be a fixed but other-wise arbitrary po rit

n~~w 11 1a, - ,....nin A. Define the events

~~~~D (a ,(p )  -- [ 1e :1 ( ( ) : ( ) a t ' I - 1 ,2 . .. n ] ,

(2.9 .8)

where p E 4. Then, using the independence of' R and R2 and

(2.9.8) we get

P(V = a) P(I (R H = a,, i 1,2 ...... n)

R,

E a , 1,2 . .... n

4 HE
2 P( I z~() a, 1 1.,...n)

E P ( R -  D (a , (2 . . )

.P. A iK* . N V :rMv'yyI 'P.:le,



we nlow ohst-rve -h at the components of) a (IIct ate wi ch 1pop; i in)I s

ufp (w( y p i mu st be ma T c hed o)r- ul salnt ( ted by try I's.r-rlk

tIt ioni % I r ordler Ihat 41 (- D ( a,~ C 1early, Itle number of' ways in 3R

wh ('h we (all permute 1-he Initegers I , 2,.. ii anid produce 1P' s t hat

nt- it rg to () ) y) depend:-; (Mlly MI ht' rf XCA vfector cA cmd It hO o CAtI ht I P

p s an arrotrigiere t )t' ii (I I I rnet i utegers . li-e t ho' c 11 n 1 y X', .,

D( (a y ) does riot- chiange cis pranges over 4.InI pirt- Icu lat, D)( a, p0

and D(a, p) have the same number of sample points, where

qp (1,2, . n). Using (2.9.0), we therefore obtain

P( 1),J ~ ( (ip) Vp 4)

lh ul ght 11triOI d' -p~: In (2 .)0.10) a:- hI txed nukmber d±r

I f ir) 'r <P :11o the chfui;oti -t. l,) twau that )n I " .99) , wfe FIeek

rlhe I'X Pe( at I On (Af -A Ofegi.'rat r-.irid oli var, I ;ib Ie . Hence, wt. ) 1 i

11 ) I'( I t a )

i>(A a) .'-I)

Be ~ ri'; a ;I wa ) ar t Ia I Y o-hr,:;ero? f r-omr A ,we- V 1 iii I I y er t r, i

(i 2ir n I Ii)
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The exchangeability of 61 "... follows from the fact that the

distribution of R1 is uniform over t.

It readily follows from Proposition 2.9.1 that, in the indepen-

dence case,

n n
V d X (2.9.13)

"~n ni1 ~

n
In view of (2.9.13), if we let Z A then the exact as welln ni'

n
as asymptotic distributions of N(T") = ) V can be derived by

ni1=1

studying Zn, which is same as the no. of matches in the card matching

- problem. As stated in Proposition 2.3.1, the asymptotic distribution

of Z is Poisson with mean 1. We now present another proof of this
n

well known result. The novel part of our proof is that we establish

cortaln dependenco properties of n ard consejiint ly

derive the limiting distribution by using only the first two moment--

of Zn

Our program can be stated as below:

(I) Show that 6 's have a certain positive dependence structure.
ni

(I) Invoke a theorem due to Newman (198?) to arrive at the Poiss(n

convergence of N in the indeperiden('e caste

We start with the definitions of some concepts of dependence of

rdindom variables.

NO
%

VV
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De inIt ion. 2.9.1 (L ehmann, 1966) x arid x2  are said to be p)(;it IV#121

quadrant depeniderit 'QD) if'r

iiP(x 1 >' x x2  x ) > P(x >X ) P(x > x ) V x

1( X, 1 2 2 ''
P

Deri nition 2.9.2 (Newman. 1982): x . xn are said to be linearly

p)s 1t lwe ,ualu tcirnt (lepenrde t. ( ,PQD) iff for any dIs.joint :;ubst s A,B . '

I

, { I,2, ... , n} arId pots It ve constants a, .. a

il x and )" a x are PQD. (?.9 15)
kk k k

M A k(B
I

li{r'l! ion 2.9 3 (Esary, Proschan, Walkup, 1967): x 1 ... , xn are"-?

;a id to be -assoc ated i Fr for every choice ofr Funct Ions

tl.(x. .... x ) and f?(x .. , x ) which are monotonic increasigI I 2 1'

in each argument,

'OV(f Cx I .. x ) (x i  x )) > 0, (2.9. 16) "
- In 2 1'n

t()v i I,-(I (xV . . . . . . . x ) ard f 2 (x . . . . .  xn ) have f inite variance.

It i:. wel I known that associat Ion is a stroniger, property I han

.PQ'[) prq)o r'1 y , f n rar. )m vrltables x., ...... x . We will now %

estatfl li;h Iat A ., A in (2.9.5) possess a weaker version or I

The II,P ) pr ))erl y. "

kfemma , 9. 1 FVor k 1 , ' , n I1,

k

6 and 6 are PQD. .. )
nni nn

ProoF: Fix k I.2, . , n 1. Then, using (?,9.li) , we se that

Iw

%%.



791k
" - 79

S6ni and 6nn are PQD if

k k
T P( 6 ni) x 1 ,6 >x 2 )> 

P (  6 n > xl) P(6nl > x2  1  x x2R

(2.9.18)

Because 6 ni's are binary random variables we obtain

1 if x 2 < 0

P(6nn > x2  (2.9.19)

0 if x 2 > I

It is clear from (2.9.19) that (2.9.18) holds for any x I , provided

x2 < 0 or x 2 > I. Hence, it suffices to show (2.9.18) for

0 x2 < 1. However, if 0 < x2 < 1, then (6nn > x 2 nn

It therefore remains to be shown that

P( [ 6 > I, 6 n 1) > P( 6ni > L) P(6 n 1),1=1 ni - 'nn i- n- nn

V t = 0,1, k. (2.9.20)

By definition of 6ni

1
P(6 1) = P(R i) n

ni 11i

(2.9.21)

and P( n 0) = - I
nin

Writing P( n >6 t) in the form

ni

-i i



%
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n n
P( X 6n > = 0) + P( ni - = ?1 t 1

i=i n=1 nn

and using (2.9.21) we can rewrite (2.9.20) in a more useful form:

k
P( ' ni - tlnn 0) < 6ni > tl~nn = 1), -

i=l ni nnnln

0, .... (29.22)

Note that, in (2.9.22), k is a fixed integer. For a given k, N
we now fix the value of % and proceed to establish the inequality

in (2.9.22) by means of a combinational argument.

It is clear that we can express the event (6 nn 0) or

n-1
as U (R = ). Hence we can write,

k n-1
( n >  = 0)= U J (2.9.23)i=l - n I "

where

• . ik

IJ ( X6> t., R 1  a),c 1,2, . ,n-l (2.9.24)

Observe that, in (2.9.24), J 's are mutually disjoint measure-

able subsets of 4. Let us now fix a = 1,2, ... , n-l as well. Then,

any permutation p in J, satisfies (P(n) = and (p(I) ...... (n 1))

is an arrangement of the integers 1,2, . ... (-I,o+l, ... , n producing

at least t matches of the type p(i) = i in the positions -

i = 1,2, ... , k. On the other hand, any permutation p in -

;f
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X6,. ni t. 6 nn 1) satisfies cp(n) n and

((l. .. ,p(n-1)) is an arrangement of the Integers 1,2, ... , n-

* yielding at least %. matches such as 4(c) = 1. in the positions

I = 1,2, .... k. Because a on, It Is clear that

#(J) < #t( 6 It 9, 6 =1) ,(2.9.25)

i10 ni- nn

* where #(A) denotes the cardinality of the set A.

Since a, kC and 9t were arbitrary choices, we get from (2.9.23),

k kC
C 6n t' 96 =0) < (n-1) #( 6 t> 96 =1)

ni nn ni - nn

kC = 1,2, .. ., n-1; t. 0, .. ., k (2.9.26)

Since H Is discrete uniform on Iit follows from (2.9.26) that

P( 6 >i 9. ,6 nn 0) < P( ni tnn 1 (-)

(2.9.27)

Multiplying both sides of the inequality in (2.9.27) by n and using

(2.9.21) we establish (2.9.22), which implies that (2.9.20) holds. 0

We now state two useful results due to Newman.

Lemma 2.9.2 Newman (1982): If x and x are PQD, then
1 2

'Nh
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IE(exp(irx +isx 2 )) _ E(exp(irxl)) E(exp(isx2 )l

_ Irsl cov(xl,x 2) for all r,s E R (2.9.28)

0

-'. **
Lemma 2.9.3 Newman (1982): Supposelthat x ,n... x are LPQD. Then

n n n 4j
il (r1, ...,r) - l P (r )I < I l I'- r I cov(xk xt)

X,..xnn j=1 x j k1t=1 k Ik

k < t

V rI, ... r E R (2.9.29) wI.

where T's are given by

nIt E(exp(l I r rxj

1 . n J=l

lx E(exp(i rjxj), J = 1,2 ..... n. 0
x

Suppose now that we choose the arguments rl, ... , rn in (2.9.29) '1
equal to an arbitrary real number r, say. Assume further that , .'

x I  ... x are exchangeable random variables so that they have . ,

common characteristic function, namely IP (r) and that the covariance 1Z
xl

between any pair of the x s is equal to cov(xi,x It follows from
j 1' 2

(2 .9 .29 ) t h a t %

(r) I n r < r 2 cov(xx 2) (2.9.30) I

n
This estimate for approximating the characteristic function of x

I....................
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by the product of the marginal characteristic functions of the x's

depends on the fact that xi ..... xn are LPQD. We now use Lemma

2.9.2 and show that, with regard to the variables 6 ... , In
nl' nn'

an estimate similar to (2.9.30) can be obtained under the weaker

version of the LPQD property which is given by (2.9.17).

Lema 2.9.4: Let 6 ns be the Bernoulli variables in (2.9.5) and
ni

6ni" Th n n 1
let Z = Then,

,'l' (r) - n  (r)l < n(n- ) Itn cov(6 ) I
n 6nl 2 nl' n2

V n > 2, r ER , (2.9.31)

Proof: The exchangeability of 6nl ... 6 was established In [7i

Proposition 2.9.1. Hence, we obtain

cov(6n.6n) = cov(6n,6n), V 1 J j, (2.9.32)

ni' nj nl n2

(r) n (r),(V)J (2.9.33)

4 Note also the well-known property that I
IV (r)I < 1, V j and V r (2.9.34) 0

". From Lema 2.9.1, we have

1 and 6 are PQD, V k 1,2, n-l.
ni nn

In view of the exchangeability of 
6 nl . . 6 nn, we can restate this I %

property of the 6 's as follows: D
ni

Am
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Let A and B be non-empty disjoint subsets of (1,2, .... nI such

that B is a singleton. Then

6 n and X Sni are PQD (2.9.35)

Fix n > 2 and consider the following finite sequence of statements: .

(r) - Im (r) < m(m-l) I cov(6 6nl -n 2 c°(nl' n2)to

6 6 ni n0
%0n

V m = 2,3, ... , n (2.9.36)

Note that (2.9.31) is obtained from (2.9.36) by letting m = n. We S,

shall now establish (2.9.36) by induction on m.

By choosing A = (11, B = (2) in (2.9.35), we find that 61 and

6n2 are PQD. The Lemma 2.9.2 readily implies that (2.9.36) holds for

m = 2. Now, let us assume that (2.9.36) holds for m = 2,3, ..., (n-l).

n n-1
Splitting 6 ni as the sum of 6ni and 6 n we infer the PQDii=l niln nn

n-1
property of Z 6 and 6 from (2.9.35). Hence we obtain again ,

ilni nn .

i=I,

from Lemma 2.9.2 and (2.9.32) %

IFn (r) T n-1 (r) T nn (r)I

~ ni ~ ni ni=i i=i

n-I

< rl2 cov( 1 6 ni6 )- i =Inn

Irl 2 (n-l) cov(S nl6 n2) (2.9.37)

Now, we shall invoke the induction hypothesis that (2.9.36) holds for 'Im
'2
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m = n - 1. Using (2.9.33) to (2.9.37) we finally establish (2.9.36)

for m = n as follows:

{ (r) n (r

n 6nl

<.3 _} (r) -
1 n-i (r) • *(r {"

nn %

i ni I 
6 ni

+{n-I (r) nn (r) - n (rl{ 0
nn 6nl S

~ ni

< Ii 2 (n-l) cov(6 nl 6n2)

- •l

In- 1 (r) -I (r)I
x 6 n nl r

< Irl2 (n-l) cov(6 6n) + Irl2  (n-1)n-2) cov(6 6 )

2l n22-2'n

- r2 cov(6 A )(n-l)(l + nInl' n2 2

n(n-1) Ir 2 cov(6 6 ) (2.9.38)
2 nl' n2

The proof of (2.9.36) is complete by our inductive argument and

(2.9.31) follows from (2.9.38). 0
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Our preparations so far in this section are adequate for the

purpose of establishing the Poisson convergence of N in the

independence case.

Theorem 2.9.1: Let T and U be independent random variables. Let

the number of correct matches, N, be given by (2.9.1). Then

N - Poisson (1), as n 4 (2.9.39)

Proof: We obtain from (2.9.13)

N Z
n

n
where Z = l 6 Using the exchangeability of 6 s, we obtain

i nl ni

cov(6 nl. 6 n2) = P(R 1 1 = 1,R 1 2= 2) - [P(R 1 1 =I)]2 (2.9.40)

Since P(R I=l,RI2 =2) = i/n(n-l), it follows that

1

n(n-) v6 6) = - V n > 2,
nl' n2 n

and therefore

n(n-1) cov(6 nl6 n2) 0(1) as n- (2.9.41)

The proof of (2.9.39) consists of showing that the characteristic

function of Z converges to the characteristic function of the
n

Poisson distribution with mean 1. In other words, we shall show that

TZ (r) 4 exp(exp(ir) - 1), V r E R as n- (2.9.42)

n

To this end, Lemma 2.9.4 gives the following estimate of the

!- I



difference between the characteristic functions in (2.9.49)

Z(r) - exp(exp(Ir) - 1)1

nn

< - n (r)j + ITnn (r) - exp(exp(ir) 1)1

2 1 Irl cov(6l ) + IT n (r) - exp(exp(ir) - 1)I
2 

ni' n 

(2.9.43)

Now, using the distribution of 6 nl given by (2.9.21) we get

n(r) = [1 + i (exp(ir) - 1)]

Clearly.,

I (r) exp(exp(ir) - 1), V r E R, as n (2.9.44)

nl

It readily follows from (2.9.41), (2.9.43) and (2.9.44) that (2.9.42)

holds. Hence we obtain

nd IZ 4 Poisson (1) (2.9.45)

which is equivalent to (2.9.39). U

We now assume that the broken random sample comes from a

population in which T and U are dependent random variables. It

should be noted that extensions of some of the techniques used in

the proof of the Poisson convergence in the independence case to the

%S
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dependence case are not available at this time. Specifically, no

proof of the counterpart of (2.9.17). namely

k
SVni and V are PQD V k = 1,2, .... n-I, n > 2

(2.9.46)

is know. However, direct verification of the association of

vnl ... Vnn has been carried out for n=2,3,4 when T and U have the

Morgenstern distribution given by (2.6.16). Since association of

random variables is a much stronger dependent structure than

(2.9.-46), it is natural to conjecture that Lemma 2.9.1 holds even

when T and U are dependent.

In the absence of a valid proof of Lemmna 2.9.1 in the depen-

dence case, we need extra conditions on the distribution of T and U

in order to derive the Poieeon convergence of N. The following lemma

will be useful in deriving the main result of this section.

Lemma 2.9.5: For a fixed d, let L -and L = (LI .... L d

S and L are defined in Section 2.2. Then,

a.s
L 4 L, as n- (2.9.47)

Proof: Fix d > 1. It is clear from the definitions of k in

(2.2.10) and the sigma-fleld Ad in Section 2.2 that the infinite ',

sequence ,e

Ld+ 1' kl+2........

P1 d -
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of d-dimensional vectors are conditionally i.i.d given A . Hence,

using the Strong Law of Large Numbers for exchangeable sequences

(Chow and Teicher, p. 223) we get

1 n a.s
- . " - E(IlA) (2.9.48)n-d __ 1 Ec d~l dk=d+l

In order to evaluate the limiting conditional expectation in

(2.9.48), note first that, for j = 1,2, ... , d, T and U are

uniform random variables. Now,

E( Jd+ IT =t U =u)
jd j ' :i

;d = P(t - T > 0) - P(u U > 0)
i d+l d+l

= P(Td+I < t ) - P(U <_ u )

-tj - uJ

-L (2.9.49)

Therefore, it follows from the definition of d+l in (2.2.10) and

(2.9.49)

E= (LIL 2  ... , P) (2.9.50)

Hence, (2.9.48) and (2.9.50) imply that ,

n a.s
-- - L, as n 4 (2-9.51)n-d k=d+l -•

Also, d being a fixed integer, we have
p

I''

' . :.V
a.. N'.
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1 d a.s
n-d 1i~k- 0, as n -*~(2.9.52) 

.

k=1
Since,

in
L= I-n n klIk

the lemma follows from (2.9.51) and (2.9.52)

The following sufficient conditions will be used to prove the next

theorem.

Assumptions: In the notations of Section 2.2, let

(b) J1V I'(e)I de < (2.9.54)

-CDI

d
and (c) P('i'; t) 0(t )as t 4 V d > 1 (2.9.55)

Theorem 2.9.2: If Assumptions (2.9.53) to (2.9.55) hold, then

N -. Poisson MX as n 4 co (2.9.56)

Proof: Proof of (2.9.56) consists in showing that the factorial

moments of N converge to those of the Poisson distribution with mean :-

X, In other words,

E(N~d X4  V d 1,2,.. (2.9.57)

By the Fourier Inversion theorem, 'I

N.1tL1N.X



91

" P( n O) (?,-d

P(S n 0) (21r) s () d , (2.9.58)
-if -ir -nl

where T (0) is the characteristic function of the d-dimensional
S
-n

random vector S defined in (2.2.7).

-n

The Assumption (2.9.54) ensures that the Fourier inversion

theorem can be applied to the continuous random variable L. Noting
1

that k c(xx) dx is the value of the density function of L at 0,
0

we get

X = gc(O) (21) Y L (t) dt

Since Lj = Tj - Uj, j 1,2, .... d, are i.i.d, with their common density

function equal to g it follows that

d -d
-OD (2) L (e) dO (2.9.59)

-Recalling the representation

n ,

N(q,") = A
i=l i ni

from Corollary 2.6.1, we obtain

E(N(d) (d)

n P(An1An2 A nd

(d)
=n P(S =0). (2.9.60)

Vn
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where n ()=n(n )..(n - d + 1).

For fixed d, It is clear that n (d) : ndasnIthrfe

follows from (2.9.60) that, in order to prove (2.9.57), it is

sufficient to show that

Lim IA(d,n)l = 0, (2.9.61)

where ?A(d,n) =nd P(S n )- x d

From (2.9.58) and (2.9.59), we obtain

A(d,n) = n (21r) 11 .. SI (u)du-(2r)- I ... I T (e)dO
-ff -iv -n -C0 -C0

(2.9.62)

On making the change of variables 0 = (nl, ... , nu) dIn the

first term of (2.9.62) and noting that

1P (en) L (0) we get

d nwr nirGo 0
A(d,n) =(21r) T (e)de - T . ~() de

-nir -niy -n -CO -00-

(2.9.63)

For positive constants a and B, which will be determined

later, define four integrals as follows:

(i) J T I (0) dO (2.9.64)
e L-C -
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2ii J(n) = 'V L (0)dOI L() d (2.9.65)

(3) (n) = I t L (0) deV (2.9.66)

-n

(i) J(dn) = ((0) X (2.9.68)

For appropriate choices of a and 8, we will show that

Let c > 0 be a fixed number. Then, assumption (2.9.53) and the

expression (2.9.59) imply that IF L(e) is absolutely integrable

d
on R . Therefore, we can find a large enough a such that

< c/4 (2.9.69)

From Lenmma 2.9.5, we have

L a s
-n

which Implies that (cf. Bhattacharya and Ranga Rao, 1976, p.44)

T L (e iL~e) as n ,
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the convergence being uniform on the compact subset

(9:eER dand 121 < cL)

Hence, for the ai chosen above, we can find n Isuch that

V n > n,

* 1J(n)I < c/4 (2.9.70)

In order to show that 1J 3 (n)I - 0, we transform e to

r /n In J 3and obtain

J (n) = n d IF SI (rd (2.9.71)

n

Note that S = Is a lattice random vector so all its

moments exs.Sne(Ui) are i.i.d, It

follows from the definition of 1,in (2.2.10) that

E(S n 0 (2.9.72)

It was argued in the proof' of Lemma 2.9.5 that, for all n > d,

Id-l '-' nare conditionally i.i.d given A d with mean

E( .IA d) L, V j =d+l, . . ., n

It Is easy to verify that the dispersion matrices D( .IA d)

3 d+l, .. ,n, are positive definite. Moreover, for

.1=1,2,.. d, jj Is degenerate given A d and
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D(L) = 1, (2.9.73)

where a 2 var(T-U) and I is the dxd identity matrix.

The dispersion matrix of S is, for n > d,

n
D(S n) = D( )

n n
- E(D( I iI A )) + D(E( I IiIAd))

, i=I i=i

2
= (n-d) ED(Id+IAd) + (n-d) D(L)

We finally conclude that

D(S) - (n-d) o2 I (n-d) ED(d lA)

(2.9.74)

is positive definite.

As the second-order moments of' S exist, we expand IF (r) around_n ~ Sn-n1

r=O and using (2.9.72) obtain

1 2log TSn(r) - 2 r'D(S )r + 0(Ijrll) as Ill -* 0 (2.9.75)

J1"~

In view of (2.9.73), we obtain -

I2

lexp(logYf (r))l 2 expl- ( 21 2  2
P S5 ()I x( 2 a HEI Oj ),

n

as Il1 ll 0

k
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Hence, there exists a constant B > 0 such that for n > d,

(r ) l _ exp(- 2 (n-d 2a2 2

V III <__ (2.9.76)

Now, 3 n such that V > n q < B so that we obtain using
2- 2'n

(2.9.72) and (2.9.76) ., ,.

d1 22 2

J 3 (n)1 < n J .. J exp(- i (n-d) 2 a 2 ) d2- 1l2

n- <lr kB :
n

1 2 21

< J ... J exp(- I a 2- 11 dr (2.9.77)

I e > 4 4

It is clear that we can choose a large enough a in (2.9.77) such

that V n > n2#

J3(n)l < c/4. (2.9.78)

Finally, to show that IJ 4 - 0, we transform u =/n in (2.9.67)
4 --

and obtain

1iJ (n)l <[ n II (u)1 du (2.9.79)

B<u ,r n

In view of the earlier remarks about the conditional distributions

o given A , we obtain for n > d,

of - I n( ...d (u l:-
d _-

IEItS (u) I ^d n-d (2.9.80)

where ld+ll. wd ) is the value of Id+1 given

I,•

'o
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-iT 1*U1 ), I = 1,2, . .. , d. Since the Characteristic function

'P (u) is uniformly continuous on the compact set

td: d' <ll<iofRIt attains Its maximum inside this set, say

at u = u". Furthermore, TI has period 2v so that, for almost
~d+l

all realizations (w1,...w)

sup itV (u)I < 1 (2.9.81)

Letting 'PT= tn(td' (u")], we get from (2.9.79) and (2.9.80),

j 4 1 n d BA (exp(-(n-d)'Va) (2.9.82)

=n d. .(n-d)

where

M(s) =j . .. I exp(-s'P") 11 dC(x J, y (2.9.83)
0 0

is the moment generating function of TO' with a real positive

argument.

Now, using the Abelian Theorem (cf. Widder (1941), p. 181), we

* obtain

d P('Pa<t)
Lim sup t M'PT) < Lim sup[ td r(d+l)) (2.9.84)

By Assumption (2.9.55), the right-hand side of (2.9.84) is zero and

it follows that
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d
n M%,(n-d) -- 0, as nl~~ 2

which Implies, in view of (2.9.82),

1J (n)l 4 0, as n - w, (2.9.85)

It follows from (2.9.69), (2.9.70), (2.9.78) and (2.9.85) that 'ell

Lim IA(d,n)l = 0

The convergence of factorial moments in (2.9.57) follows immediately,

which in turn implies the Poisson convergence in (2.9.56) 0

The validity of Theorem 2.9.2 depends on whether the Assumptions

(2.9.53) to (2.9.55) hold or not. We shall now given some examples in

order to illustrate the fact that these Assumptions are not vacuous.

We start with a discussion of (2.9.53).

For any Copula C(x.y) on [0.12 , one may define 42 (possibly an

infinite #) by the equation

2I

* + 1~ Q fx.y) dx dy, (2.9.86)

where Q(x,y) dC(x,y)/dxdy is the Radon-Nikodyn derivative of the

TJonit distribution of V with respect to the product measure of T and

U (i.e., the independent case). C(x,y) is a 2_-bounded distribution

(with marginal uniform distribution) if *2 < +-.

The class of P -bounded distributions is large, as is evident .,

from the following general result (see Lancaster 1969, page 95).

Proposition 2.9.3: If H(t,u) is a 0 bounded bivariate distribu-

I%
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tion with marginal distributions F(t) and G(u) then complete sets of 6

orthonormal functions ,li 21' I = 1,2, .... can be defined on the

marginal distributions such that

dH(tu) = [1 + p n (t) ni (u )] dF(t) dG(u) (2.9.87)
i =1 i ,11 -2

, -%

and t2 = . 2 (2.9.88) 6

It may be recalled from (2.6.12) that, when all p> 0 in the above

canonical expansion of the joint distribution of T and U, we say T 0

and U are positive dependent by expansion (PDE). It follows from

(2.9.87) that, when a copula C(tu) Is *2 -bounded, X in (2.9.53)

can be evaluated using the orthonormality of n as

*1

X c(x,x)dx '.

0 -

= 1 + X 0 (2.9.89)
i

67 It follows from (2.9.88) and (2.9.89) that the finiteness of 02 and .

X are related to each other. Specifically, since V i > 1.

the canonical correlations p1 < 1, we obtain

a, 2

With regard to the Morgenstern distribution in (2.6.16), we obtain

';, -' ,. ' : =* *-. , .%- ,,, S % % -, -,, ,, , - - . , , . - % .> ..a . .. ,-.a ,,- %, *p, , * €, , - %%, -~a % P,,, a, - 1
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if' 1=1

0 if i>l

where -I<cx<l. However, we have

1
X =Jc(x,x)dx

0

1 + 3

3I

which is finite. Similarly, in the bivariate normal distribution

given by (2.6.15).

1
X= -,0 <l<

l-p

In view of these examples, assumption (2.9.53) is not vacuous.

Bhattacharya and Ranga Rao (1976) (pp. 189-192), gives conditions

that are equivalent to the assumption (2.9.54). We cite one here:

Wn th
Let G L denote the n convolution of the distribution of

L - T U. where m > 1. If there exists an integer m such that GL

has a bounded (almost everywhere) density, then the modulus of the

characteristic function of L is integrable on (---,-)(that is

assumption (2.4.54) is valid) and vice versa.

Another sufficient condition for absolute integrability of

IF (8) is due to Bochner and Chandrasekar (1949). If there exists
L

a bounded (almost everywhere density gL(t) of L = T - U and if its

characteristic function T L (0) is (real) and nonnegative, then

I%

.41Z
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We illustrate the use of this sufficient (but not a necessary)

condition when (u) has the Morgenstern PDF, D'

C(xy) = I + a (1 - 2x)(l - 2y)

Clearly, as IciL 1, lxi < 1, jyI < 1, 3 a positive constant k

such that

C(x,y) k I, V (x,y) c[0,1]2

Note that 0

"- (t) = I z(t+y,y)dy, V t > 0 "'
y=O ".

By the symnmetry of C(x,y) in and, it can be shown that 0

gLl-t) = gL(t), V t > 0.

Now, using the bound k for C(xy), and the fact that [-11] is .I
the support of L, we get

1-t

9(t) < kc I dy < 2k <
0

Hence, it follows that the PDF of L is (almost everywhere) bounded.

We now show that 1L(0) is real and nonnegative V >i 0
pL

,1(6) :E~li (T U)) = I + CI 2 .I
L 1

--.

A." where, I1 1 e dxdy
00
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with z 1  e IXOd x
0 

'

1 1 
.a t . '

1= ei(XY)O (1-2x)(l-2y)dxdy
0 0

z22 

ixe
with Z = e (1-2x)dx

0
.

Hence, (0) zz ()12 + z2 (0) l >_ 0 if > 0. ,. .-He c L( ) = il 1 2 
a

Invoking Bochner's sufficient condition, we get 1 14 L()Idd < .

If a > 0. However, for all a,

" -1* I (e)Id e f I Iz(6)12  de , + , 1z z( e~ l2

(2.9.90)

so that the two integrals on the right hand side must be finite when

O> 0. It follows that, even when a < 0, I iv(O)IdO < -. We con-

clude that (2.9.54) is valid for any member of the Morgenstern family -a

of densities. It may be remarked, in passing, that, in view of the

generality of the conditions of Bhattacharya and Ranga Rao (1976) and V

Bochner and Chandrasekar (1949). (2.9.54) holds for many distribu-

tions of (UT).

,'

• ' ~ " \.. a . a , ,
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Lastly, we discuss the validity of (2.9.55). To be specific,

when d=l, one can get the bound

1145()i Pe) <1- (1-p) + sin2 (8/2) V 8 < 0 < w ~ "S

where po = PO (w) = 1 - x - y + 2C(x,y)

Therefore,

11 -(n-1)4sin 2 [p°(l-P°)]
1J4 (n,B)1 < j n e - dxdy.

00

Thus, J - 0 as n - if we show that nMp (-)(n ) 0 as S

0 0

n - , where M (s) is the Laplace transform of n. A sufficient

condition for this to happen is

P(P (1-Po) < t) = 0(t), as t -+ 0 (2.9.91) ,

..Let S(t) and 1-6(t) be the roots of the equation

P (1-P o) t
0%

It suffices to show, as t 0, 0,

P(P 0< S(t)) = O(t) and (2.9.92)

P(P 1 - 6(t)) O(t) (2.9.93)

T0
If (U) is independent, then the PDF of P can be shown to be

p (x) 
.-

n(5-2xl)I(x)
o (0,1]

% .. .. 0
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So that (2.9.92) and (2.9.93) are valid when C(x,y) = C where
0

C (xy) = xy. Also, if C(x,y) > xy, then P (C) > P (C ) so that

P(P oC)< (t)) < P(Po(Co) < A(t)) (2.9.94)

Thus, using the exact calculations based on the independence case,

N it follows that

V C > xy, P(Po(C) < S(t)) = O(t)

T
At this time, we are optimistically speculating that, when (U) are

dependent, (2.9.93) is also true. We are yet to demonstrate that

the assumption (2.9.55) is not vacuous for any d > 1.

After we derived the proof of Theorem 2.9.2, we discussed the

Poisson convergence problem with Professor Persi Diaconis, who

communicated the problem to Professor Charles Stein. In his Neyman

lecture at the IMS Annual (1984) meeting, Professor Stein outlined

an alternative proof of the Poisson convergence using his well-known

theorem concerning the approximation of probabilities. However, we

have not seen any rigorous version of the proof yet.

%.

p.'.
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Imm D

3. MERGING FILES OF DATA ON SIMILAR INDIVIDUALS

Problems of statistical matching were discussed in Chapter 2,

where we assumed that the two micro-data files being matched consis

-ted of the same individuals. Moreover, the files did not have any

common matching variables. In Chapter 1, practical and legal reasons

were cited for these assumptions not to hold In certain situations.

Suppose, then, we have two files of data that pertain to similar .

individuals. Allowing for some matching variables to be observed

for each unit in the two files, we seek to merge the files so that

inference problems relating to the variables not present in the same

file can be addressed. This scenario was labeled Case III in -

SectiorL 1. In this chapter,we shall first review the existing

literature on Case III, and then briefly discuss some alternatives

to matching in certain models in which the non-matching variables V

are conditionally independent given the values of the matching

0
variables. Finally, we will present the results of a Monte-Carlo

study carried out to evaluate certain matching procedures relevant

to Case III.

Y

POOp

12.
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3.1 Kadane's Matching Strategies for

Multivariate Normal Models

Distance-based matching strategies were introduced in Section

1.5. The choice of distance measures In the matching methodology can

be motivated using a model where the unobserved triplet W = (X,Y,Z)

has a multivariate normal distribution. The set-up of the two files

to be merged is as follows:

File 1 comprises a random sample of size n1 on (X,Z), while File

2 consists of a random sample of size n2 on (Y,Z). Furthermore, we

expect very few or no records in the two files to correspond to the

same individuals. Statistically, this means that, for all practical

purposes, the two random samples are themselves independent. For

this reason, we shall denote the sample data as follows.

(Base) File 1: (Xi,Zi), I = 1,2, n I

(3.1.1)

(Supplementary) File 2: (Y ,Zj), j = nl+l, . ,+n 2

Once finished, the matching process leads to more comprehensive

synthetic files, namely

Synthetic File I: (X1Yj Z ) , i = 1, 2, . n. n

(3.1.2)

Synthetic File 2: (XYZ), j = n+ .... n+n

where, Yj is an imputed value of Y that comes from the original File

2 and X is an imputed value of X that is taken from the original

File 1 by means of some matching strategy. We shall now review '

~V\E V 4 - 4
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Kadane (1978)'s development of the matching methodology for a multi-

varlate normal model.

Suppose that W = (XY,Z) has a multivariate normal distribution

with mean vector (YxY¥,)z) and variance-covariance matrix

= I yy (yz (3.1.3)
Yzx Ezy Izz

The parameters Ixxxzl Iz can all be estimated consis-

tently using the marginal information on (X,Z) and (Y,Z) respectively

in the two files. However, Ixy is an unidentified parameter, because

the joint likelihood of the data on (X,Z) and (Y,Z) is free of the

matrix Zx. In fact, in the domain in which x is such that the .
xy xy

matrix Yxx I Is positive semidefinite, nothing Is learned

from the data about Jxy, except in a Bayesian framework, where Xxy,

lxzlyz are, a priori, dependent. Even in this situation, the

posterior distribuion of x is updated only through z and "
xy xz yz

Kadane's approach to merging File 1 and File 2 consists of the

following steps:

(i) Start with an imputed value of x via some a priori distribu-
xy

tion on the covariance matrix 1, (1i) Complete Files 1 and 2 by

predicting the missing data, X or Y, using the marginal information %

in the files, (iii) Match these "completed" files based on a

"0 %
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distance measure between records of the two files, (iv) Estimate

parameters such as

y = J g(w) dF(w) , (3.1.4)

using the synthetic file resulting from Step (ill) and repeating the

Steps (ii) through (Iv) many times to find the sensitivity of the

estimates to the imputed value of xy and finally weight the results

using the a priori distribution on X.

Some further details of the steps outlined above are as follows:

Suppose that a an imputed value of Ixy is available. Then we can

assume that Ixy is known and complete the two files by means of condi-

tional expectations. Let lab.c' for any letters a, b and c, be given

by
-iV

ab.c ab ac cc cbI

Then the predicted value , say, of a missing Y in File 1 is given by

Y E(YIX,K)
1 1

IyX + Zy (3.5)

y yz y xx.z ( - Xyz.x Xzz x (-z)' (.1.5

Similarly, the predicted value, X, say, of a missing X in File 2 is

given by

X E(XIY,Z)

-l - + x x-l (3.1.6)
=x xy.z yyz y.y zz.y z

Using (3.1.3), (3.1.5) and (3.1.6), it is now easy to show that

(XI' I'I)- is multivariate normal with mean vector (ExYEyEz) and

variance-covarlance matrix

'4
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1z A2 A' I
1% ~where A X X X X X X

1 yx.ZXZ XX yz.X ZZ xZX

and2 zx xx .z xy. z + zz Izz .x zy. x

-1 -
3 2 yx.z xx.z Ix Ixxzxy.z

Also. the vectors J Xl~,..,n+n hv a common

multivariate nra itiuinwt envco XEOZ n

q variance-covariance matri~x

HI y y (3.1.8)1
A I6p Xzy

4 xy.z yy z yy yy .z yx.z ~t~

+XIxz.y Xzz.y Xzz IXz.y Xzx.y

21xy.z Iy~ Y- yz Izz.y lzx.y I
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5 yy yy.z yx.z yz zz.y zx.y

and

A +X X ~X
6 zy yy.z yx.z zz zz.y zx.y

Note that the distributions given by (3.1.7) and (3.1.8) are singular

because the predicted values Y and X are linear functions of the

other components of the random vectors T C Y Z ) and

U = (X Y ,Z n) respectively, where i 1,2, ... , n1 and
-3 I -f+n 1 - 1

J = 1,2, ..... n2. In order to describe Kadane's procedures to match

the completed File 1, namely, ... , with the completed File 2,

namely, U1 , "''' U let us first assume, for simplicity, that

nI=n 2 =n. Starting with n records in each file, we will compute the

differences

I-JI

!I 2j XU 1 j~ < i, j n (3.1.9)

Y

-I - j4n .4.

aP

in order to define a measure of dissimilarity between any pair of

records, one each from the two completed files. Suppose first that,

there exists a vector of constants . = (... I .n) ' , say, and i and

J such that

P(U'(T ) 0) = 1. (3.1.10)

In view of the independence of the random vectors T and U j, it is clear

. --



that (3.1.10) cannot hold. Consequently, any of the vectors T - U

is free of any linear relationship among its components. It follows

from this fact and (3.1.7) to (3.1.9) that the differences Ti -

1 < i, J < n are identically distributed, each with a nonsingluar

multivariate normal distribution with mean 0 and variance-covariance

matrix +  " For any positive definite matrix A, a dissimi-

larity measure between T and U can be defined by the quadratic

form

d (A) = (Ti - )'A( - ) (3.1.11)

Also, dij(A) will be referred to as the distance between the ith record
jth.

of File 1 and the j record of File 2. Various choices of A in

(3.1.11) provide different distance measures.

It may be recalled from Section 1.5 that a constrained matching

of the two files is obtained by minimizing

C d a d ij (3.1.12)
i=l J=l ,

subject to the conditions

-

n
aij =1, V J 1,2,..., n (3.1.13)

J=l

0
n

a, = 1, V j =1,2, ... ,n (3.1.14)I= I-'-.,

and ,

aiJ 0 or 1, V i and j (3.1.15) 0

Z-f. -Y zf *r
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If" the d,'s In (3.1.12) are given by dIj(A)'s In (3.1.11) for some . |

choice of" A, then we obtain an optimal distance-based constrained

match. Note that this type of" matching of the two files amounts to ' '

solving a linear assignment problem. Sometimes, an optimal matching

may be obtained by minimizing (3.1.12) without requiring that the "

conditions (3.1.13) and (3.1.14) hold. However, as reported in ,

Rodgers (1984), unconstrained optimal matches do not provide good

estimates of the distribution W = (X,Y,Z). We shall not discuss

such -unconstrained matchings." .

It Is important to note that the aforementioned optimization

problem needs to be solved for each realization of" the r'andom ,

variables Involved. Suppose then that T I and U i have been matched

I.

In a given problem. Then it might be natural to take (XiX,, )_ and -

(Xit  , ) as s~mulatlons of the underlying distribution. Now, the

parameter y In (3.1.4) can be estimated using one of" the following ,

s;ynt ht ir: samples:|

1*;yntheti," File 1 X . Z)i: 1 , . . n. (3.1.16)

:;y,1, het L,_ File = X, . j.j- 3 - n~l, ... . , (3.1.17)

wherp Y 7 and X" ir'e values given by the matching procedure."

JI

Kadane has suggested that matchings based on a fixed A in-' ,

- ,

(3.1. 11) and the onsequent inferences based on synthetic files such

at (3N..16) or (3 117) must be repeated many times and the results

must be averaged In some sensble way In order to explore the sensi .

tivity of our findings t o the value of we started with. We shallndc "

x-3

%*%

such uncostraned atchngs.
'U
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not pursue such issues as the actual choice of a prior on and the

aforementioned sensitivity studies of inferences based on synthetic

data. However, we shall now discuss Kadanes choices of the matrix

A, which will be used in our Monte-Carlo Study of Section 3.3.

Kadane has advocated two choices for the matrix A in the defini-

tion of distance measure dl, which is given by (3.1.11): 'a

-1

(I) A = (9I - 2) (3.1.18)

where QI and 92 are the matrices in (3.1.7) and (3.1.8); this A leads

to the so-called Mahalanobis distance between the records of the two

files, and

(lt) A 0 0 0 (3.1.19)

, . ..

'€'0 0 -I

In general. the relative benefits of these two distance measures

Is an open question, although the empirical studies of Barr et al.
(1982) and other investigators reported in Rodgers (984) Indicate

that the Mahalanobis distance Is worse than the distance provided by.--

(3.1.19) In the sense of distorting the blvariate and multivariate..

relationships mong the variables X, Y and Z. In view of this. we

shall follow Kadane (1978) in calling the measure Induced by (3.1.19)

.4

" ' the "bias-advoiding distance function." The special case of (3.1.19) .,
-, Iwhen Z has only one component will be discussed in the next m u

subsection.

p%.0
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3.1.1 Isotonic Matching Strategy

We shall evaluate, in Section 3.3, Kadane's matching strategies

In the simple case when the triple W = (X,Y,Z) has a trivariate

normal distribution. In order to facilitate such evaluations, we

now show that, in the special case of a scalar Z, the matching

strategy based on (3.1.19) can be implemented without using any

algorithm to minimize distances.

Assuming that Z is scalar and using (3.1.19) in the objective

function given by (3.1.12). C is equivalent to

n n 2

C iI I (Zl - Z 2J ) a j (3.1.20)

irl j~l

In a constrained match, aij s are subject to the conditions (3.1.13)

to (3.1.15). Thus, (3.1.20) further simplifies to ,-.

n 2 n n n
Cz 1 i J - 2 Zi Z 2jai

jp

Hence, the minimization of distances reduces to maximizing .

n n - '

C' a Z 1Z23(3.1.21) -

i:1 j~l i i2

subject to the conditions (3.1.13) to (3.1.15) on the aij's.

DeGroot and Goel (1976) show that, given the numbers z i's and

z2 's, the constrained maximization of C' is equivalent to maximizing

n
i 1liZ2p(i) over all permutations (p of the integers I
1,2, ... , n. However, this latter extremal problem was encountered

,'

Wy - *f*%•* - ,,d ~ . ~- t-

-~. V -- **d
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in Section 2.4 when we derived the M.L.P p" for certain bivariate 0

matching problems. It follows that, with regard to Kadane's distance

measure given by (3.1.19), where Z is scalar, the optimal matching

strategy is to order the Z-values in the two files separately and

th th
then match the i largest Z in File 1 with the i largest Z in

File 2. This explicit solution means that, if Kadane's matrix in

equation (3.1.19) is used to minimize distances between records of •

the two files, then the synthetic File 1 is obtained by matching the

the X-concomitant of the it h order-statistic among Z's in File 1 with

the Y-concomitant of the i order statistic amont Z's in File 2. 0

We shall refer to this strategy as isotonic matching of the two files

because the matching procedure is determined by the order-statistics

of the Z's in File 1 and the order-statlstics of the Z's in File 2. 0

% 3.1.2 Sims' Matching Strategy
In the preceding subsection, it was shown that one of Kadane's

matching strategies can be simplified to the point of not using any

optimization algorithm in the matching procedurp. Such simplifica-

tion is clearly not possible when the triple (X,Y,Z) has a multi

dimensional Z . The whole idea of generating very large synthetic

data sets by actually minimizing a sum of distances over all

potential matches seems computationally profligate. One possible

alternative to distance--based strategies, which was suggested by

Sims (1978), will now be outlined. '..

V

"',

,°
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Sims has stressed the importance of exploiting the local sparse

ness or denseness of the sample data on the matching variables Z. A

dense region of the Z-space Is one within which we expect that the

distributions of X and Y given Z change little. It is, at the same

time, a region within which we have many observations. Sims has sug

gested that, within a dense region, any arbitrary matching procedure

will produce results that do not distort the Joint distribution of

X, Y and Z. Regions which are not dense have few observations and,

within them, statistical matching becomes difficult. Sims felt that

in a sparse region, statistical matchings will almost certainly

distort the Joint distribution of X, Y and Z. He suggested that, in

, such a region, we should either, not match' at all or go beyond

matching to more elaborate methods of generating synthetic data.

However, Sims did not spell out any specific alternative to matching

within sparse Z. regions.

In our Monte-Carlo Study for comparing Kadane's strategies with

Sim's, which will be presented in Section 3.3, we created ten bins

in the Z-space, namely (---,-1.00], (-1.00,-0.75], (-0.75,-0.0],

(-0.50,-0.25], (-0.25,0.001, (0.00,0.25], (0.25,0.50], (0.50,0.75),

(0.75,1.001, (1.00,+-). The conditional mean of X or Y, given Z did

a- not change much Inside the eight bins which were between 1.00

a a
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and 1.00. Hence, these latter bins were con.dered dense bins and

the two bins in the left and right tail of the distribution of Z were

considered sparse bins. Within each dense bin, we randomly matched

records of the two files, whereas the isotonic matching strategy of

Subsection 3.1.1 was used in the sparse bins.

*%

.4 3.2 Alternatives to Statistical Matchig

Under Conditional Independence

Several criticisms of the matching methodology were mentioned in

Section 1.6. It was observed that the formation of packets on the

basis of matching variables Z and the merging of records within each

packet imply that the non-matching variables X and Y are condition-

ally independent given the values of Z. Following A. P. Dawid (1979)

we shall use the notation X I Y I Z to denote the conditional indepen-

dence among the variables X. Y and Z.
.4."

Consider the situation in which we match the fragmentary data

provided by the files in (3.1.1). It may be recalled from Section

1.2 that any statistical model for this type of matching should imply

• " that the data in File I is stochastically independent of the data in

File 2. Clearly, such files of data cannot be used to statistically

test the validity of the implicit assumption that X i Y I Z. Further-

more, Sims (1978) has observed that matching itself for the purpose

of, among others, estimating y in (3.1.4) is unnecessary. He pointed

out that, when X U Y I Z holds, one can write
O..
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Xz YZ z
dF(w) dF (w) dF (w)/dF (w), (3.2.1)

xz
where F-(.) is the marginal (with regard to W) CDF of X and Z and

the other terms on the right-hand side of (3.2.1) are analogously

defined marginal distribution functions. The two separate samples in

(3.1.1) are adequate to estimate all the terms on the right-hand side

of (3.2.1) by any of a number of statistical methods. In this sec-

tion, we will discuss some alternatives to matching. With emphasis

on estimating the covariances or correlations between X and Y, we

shall first review a histogram type alternative which was suggested

by Sims (1978).

Suppose that we form a grid in the W space and estimate the

loint density of W by first counting the number of sample points in

each cell of the z grid. Let i index X-categories, j index

Y-categories and k index Z-categories. Let n ijk be the number of

sample points in the (i,j,k)th cell and use the dot notation to

define ciounts of sample points with regard to marginal d'stributions.

Thus, we have

n A tho number of sample points with X in the Ith category

th
and Z In the k category,

n = the number of sample points with Y in the jth category
3jk

and Z in the k category,

and

n..k the number of sample points with Z in the k category.

k~

-,
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Clearly, S

n k = n.k = nk

and the data in the two files given by (3.1.1) can be used to compute

nI . n .k and n for all possible values of I, J and k. Thus,
i. .3k.. k&

nlik is obtained from File 1, n from File 2 and n k from the two

files together. Finally, for a known function, g(.), say, let g(Wljk 0

denote the value of g computed at the center, w of the (IJ,kjh

cell of the grid that we started with. Sims has suggested that we

could estimate y in (3.1.4) by the statistic 0

ni.k n.AkY gX (3.2.2)
1,J,k k..

With regard to y in (3.2.2), theoretical properties such as the

asymptotic distribution of y (as the sample size tends to -) are

unknown at the present time. Also, practical problems such as the

0
choice of W-grid and the cells thereof, which would keep the number

of terms in the sum (3.2.2) computationally reasonable, have not been
,

studied yet.

7; Sims (1978) stated that a procedure like the one leading to y

in (3.2.2), which takes into account the implicit assumption of con-

ditional independence of the matching methodology, had the following

advantages over matching to create a synthetic file such as (3.1.16): 4

Z.

(a) the procedure lends itself to computation of standard errors V,

indicating the reliability of computations based on it

..

' . ¢2 e~- : * J N v .. .. ...'..',' , V', ,,'.
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(b) the procedure can be connected to the large statistical litera-

ture on estimating density functions and multi-dimensional

contingency tables, and

(c) it is likely to provide more accurate results than matching.

Given the lack of work on the statistical properties of the alterna-

tives to matching, we can agree with the advantages (a) and (b), but

regard (c) as an undemonstrated speculation. We shall not discuss

y in (3.2.2) any further. Nor shall we elaborate the merits and

demerits of alternatives to matching and synthetic-data-based pro

J cedures. Nevertheless, in the next subsection, we shall derive the !

estimators of parameters for conditionally independent normal models

without matching the files in (3.1.1).

3.2.1 Maximum Likelihood Estimation in Multivariate Normal Models

UsinK Two Files of Data,

Consider the random vectors X, Y and Z, with respective dimen-

sions p1 ' p2 and p3. Suppose that W= (X,Y,Z) has a nonsingular

multivariate normal distribution with unknown mean vector

(YXE,1Z) and unknown variance covarlance matrix X, which is

partitioned as in (3.1.3). Suppose that the sample data in (3.1.1) .-

is available and that nl>pl+p 3, n2 >_p2 +p3 . Note that, in view of the

nonsingularity of distribution of W and the fact that 42

I "' +Z are stochastically independent, the ranks of the

matrices (Z1, ... , Z ) and (Z 1 , ... , Z ) are equal to P for
n -n+n 2

almost every realization of the Z's. g

V
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In this section, we shall find the maximum likelihood estimator

of, among others, the covariances among the variables in the vectors

X and Y, without matching the files (3.1.1) but assuming that

XIYIZ. The maximum likelihood estimation of parameters in _

multivariate normal models based on various patterns of missing data ,

,. has been discussed in the literature. See, for example, Eaton and

Karliya (1983) Kariya et al. (1983), Anderson (1984) and Srivastava

V and Khatri (1979). However, the pattern of data given by the set-up

(3.1.1) does not seem to have been examined. Note first that, under

conditional independence, the density of w can be written as S

f(w;) = flz;)f 2 (x ,e)f3 1Iz,) (3.2.3) .

where 0 = (Hx,y y, zvxx, xy ,xzIyy,Xz) (3.2.4)

and fW(w) is the joint density of W given by
-(PI+P2+P3 

)/2 
-

6 %

f 1(w ) (2w)

x etr[- - (w _)(W E),] (3.2.5) 1
,2 1

etr being the exponential of the trace of a matrix. Also, fl(.) is

the marginal density functon of Z, f () and f (.) are respectively K:]
the conditional densities of X and Y, given Z = z. It is well known •

(Anderson, 1984, p. 33 and 37) that fl f2 and f3 also correspond to

certain multivariate normal densities like (3.2.5). Using the joint I
normality of X, Y and Z, it is easy to verify that (3.2.3) holds iff

4.,4

,° .o ,.% 

S'. 
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X =X X(3.2.6)xy xz zz zy

It follows from (3.2.3) that the likelihood of' the observed

data In the two files given by (3.1.1) is

L(O) =L 1(e)L 2(e)L 3(6) (3.2.7)

nl+n 2

where L I(e) = H f ( 0)(3.2.8)

nl

L 2(o) n f 2(x I z,12) (3.2.9)

and

L 3(6) H f (Yli2 (3.2.10)
3- 3~

Taking natural logarltthms of both sides of the equation (3.2.7), we

obtain

t16 a (o) ,(3.2.11)

CL=l

where % 1 (6) z~ log e(L a(6)), V =1,2,3

Let z and s denote respectively the mean and the matr'tx of
z

corrected sums of squares arid product- of the data..........Z

That Is.

* - nnn

n,+n i~l(3.2.12)
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-nl+n

2

sz 1=1(

Similarly, let I ( 2) and slI(s 2 ) be the mean and the matrix of

,.corrected sums of squares and products of the data zI "

-.. "'.(z nl I  .. , nl 2 ) Let, for any lower-case a, b and c, and any '"

:*l vector z,

4p

a.b 1  = a +  ab bb (  - z )

, [~ab.c =  ab - ac [cc [cb ( . .3

Then usi g t e n tat ons in (3.2.12) and (3 2 13), the equations

~(3.2.5), (3.2.7) to (3.2.10) and Theorem 2.5.1 of Anderson (1984)

( for the expressions defining f 2 and f 3 ) we obtain

'7t.

nl+n 2  C
.tl 1 (0 2 logly zzI

sC + Xrl Ez [s)( +i) 
In~2(i YZ(i P ) (..4

1-1

Si r ylet) =- s2 2 2.Z

S. 

S-ni. -

+ tr{ -x e xZ ( ( ))(I Ex. z
-

(3.2.15)

and
" n2(2 (0) ..-- togl 3..

2 3 Y.
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nl+n2 .

+ tr{- ( )y (z )2Jy- =nl+l lyi-; zlj~y

(3.2.16) "

Note that in (3.2.14) to (3.2.16). certain constant terms have been -,

omitted.

It is clear from (3.2.7) and (3.2.11) that the M.L.E of 0 is

obtained by maximizing % (0) over 0 for each a = 1,2,3 separately.

Moreover, this maximization is easier if we reparametrize the distri--

but ion of W by means of ?
Sn Z (pz'x z ' xy '  ' I X Z YY.''Bx By (3.2.17)

z zz -iy yz Zxxz Zyy.zBxyyz ) -

where, apart from the notations that we have already introduced, we

have, for any letters a and b

B =
ab ab bb I

and (3.2.18)

Bi

Yab a Bab b

It can be easily shown that there Is a one-to one correspondence

between 0 and n. Consequently, if we rewrite t (O)'s in terms of n,

then maximIzIng L1) over 0 Is equivalent to maximizing t. (n) over n,

for each a 1,2,3. The advantage of the transformation to the

n space is that t (n)'s are functions of rlls.oint portions of n.

In fact, t (n) Is the same as tl(0), whereas it follows from (3.2.15)

to (3.2.]) that

-- -* 
-

-ii -:'d ' ? - +- *i+S . ... . ). - "
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[ (n(x= _ 
-B 

oglx 
Bz

I

~n:
-1 [ . (xi  B z lHx B z ).]I

t 2{ 2- xx. z - -xz xz I~ xz xz I

(3.2.19)

and

t
3 (f) = - -ogI .

]" __ 2 nl+n 2  (

+ tr(- - - Byz zj)B - -Byz B yz z j)]P

(3.2.20)

In view of Theorem 8.2.1 of Anderson (1984), it can be easily

shown using (3.2.14), (3.2.19) and (3.2.20) that M.L.9 of n is

given by

SSW

,.z n l + n 2 .
"!

xy :[I ( i  - z .z

xy xz

xz=nl+n2

Biyz :{ I (Y Y)(Z - PIS (.2.?

yz '--~ 2 2I~ ( )Z-Z(..1

J=l~

S .. t " = . , . . = 1 a , . = = . . = , = - , # .# - - - , - ,, - , - , . = , . . . - L , - . J , , = . , = % , W , , , L W .
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-yz =t yz

n,

lxxz n I (X z Bxz Z1 )(4 i xz Bxz -4i

* K X (Y - -B Z)( B Z
yy-z n? 2 =nl+l - yz yz -'J Hyj - yyz B yz Z j

Using these estimators and the relationships between 0 and n~ we -

obtain the M.L.E of 0 by means of' the following equations.

V + B

-'-B

EY -yz BY z%

E= =

B B.+ (32.22

xx xz zz xz xx.z

ix2 xz izz

X B B +

yy yz zz yz yy-z

~ B

9 and y i~xz z z
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It follows from the above discussion that if we can justify the

assumption that X i Y I Z, then we can avoid matching the files in e

(3.1.1) and estimate, among other parameters, Jxy, by means of the Ze

equations in (3.2.22). Unfortunately, the two data files contain no

information regarding the appropriateness of this assumption, and

:% prior information from other sources must be considered. The point

here is that, if the matching methodology is based on assumptions

like X II. I Z, then we must look for alternatives to matching whose

statistical properties are known. Such alternatives are useful

especially because very little is known about the reliatility of

synthetic data-files. I

It is important to note that (3.2.6) is a necessary condition

even if W is not normal, provided only that X Z holds and that 6

the appropriate moments of the distribution of W exist. Hence, we

can use the estimator x in (3.2.22) even for non-normal popula-
xy

tions. We now show that x is consistent for Xxy without assuming

that W has a multi-variate normal distribution.

Theorem 3.2.1 Suppose the joint distribution of W is such that its

second order moments exist and that the dispersion matrix, [, of W is

partitioned as In (3.1.3). If X i Y I Z then given by
., xy

(3.2.22), is strongly consistent for x
xy

Proof: We first note that Ixz and I are stochastically independent
xz zy

because they are functions of the independent data in File I and

File 2 respectively. However, involves Z's in both files so
zzi

that the elements of the vector

e , 9

." .
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(i ,xz .Xz (3.2.23)xz zzzy

are dependent. The almost sure convergence of the vector in (3.2.23)

will follow from the almost sure convergence of I ,z' -t

individually (cf. Serfling, 1980, p. 52). In view of the similar-

ities of the proofs of the convergence of these matrices, we shall

only show that, as n -. ~ =1,2,

a-s
Xz 4 zz (3.2.24)

We obtain from (3.2.21),

zI n1 (3.2.25)

Recalling our assumption that the files in (3.1.1) are Independent

random samples and that the vector Z has a finite dispersion matrix,

it readily follows that the Strong Law of large numbers (cf.

Serfling, p. 27) applies to independent sequences [Z ad_

Hence, we obtain, as n CO

1 nina Z Z-) (3.2.26)

12 i14

and .~

a.s
4EMZ (3.2.27)

It follows from (3.2.25) to (3.2.27) that

C or r

LZ%
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. a.s S

a *X
zz zz

0.1 We conclude from our remarks earlier in this proof that, n -L .

a.s

(X ~xz~ .X - (1 .X .X (3.2.28)
zY zzz z ZI zy

Let us now observe that

iS

is a continuous function of the random variables in the vector

(3.2.23). Hence, the strong consistency of I follows from
xy

(3.2.28).0

3.3 An Empirical Evaluation of •

Certain Matching Strategies 4

Several distance-based matching strategies for creating

synthetic data have been discussed in Section 3.1. Specifically, two

strategies due to Kadane (1978) and a strategy which was proposed by a

Sims (1978) were mentioned. In this section, we shall evaluate these

three strategies, individually as well as in relative terms, in the

special case where W = (X,Y,Z), the unobservable vector, has a tri-

variute normal distribution. Before we discuss the Monte-Carlo Study

of the aforementioned strategies, we shall review some of the earlier

simulation studies of statistical matching procedures, which have

certain bearing on our study. A more comprehensive review of evalua

k

z*~

7I
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tions of statistical matching procedures can be found in Rodgers (1984).

Barr et al. (1982) used, among others, a statistical model in

which a vector W =X Y ,Z Z ) had a four-dimensional normal distri- %
- '2 %

bution with zero means, unit variances and various levels of

'p

covariances among the four variables. Altogether, these investi

gators generated 100 pairs of independent files, namely File 1 a
comprising 200 observations on (X,ZI,Z 2 ) and File 2 consisting of 200

observations on Y, Z and Z for each of 12 populations, where the
1 2'

populations differed with respect to the covariances of the

variables. Then, for each such pair of files, six statistical

matches were performed, namely three constrained matches and three

unconstrained matches. In each of these six matches, they used three

distance functions for each type of match. The first was a weighted

sum of the absolute differences of the two Z variables between

records of the two files and the last two were the Mahalanobis

distance and the "bias- avoiding" distance, which were discussed In

Section 3.1. A summnary of the findings of Barr et al. is as follows.

All three distance measures provided accurate estimates of the

variance of the Y variable when the constrained matching procedure

was used. They also found that all three unconstrained matching

procedur-s produced Y distributions that had means which were jM
significantly different from the corresponding population values.

The estimated covariances of Y with ZIZ 2 , which were computed only

for constrained matches, tended to be underestimated. With respect

to the most Important question In the ronlext of" mergng files'



-I

131

namely the estimation of relationships between X and Y variables, it

was reported that, if the conditional independence assumption was

e invalid, all statistical matching procedures provided estimates of'

the X-Y covariance that were extremely poor. On the other hand, for

% the cases in which the conditional independence assumption was valid,

all six procedures provided estimates of the X-Y covariance that were I
generally quite accurate. Their simulations also indicated that the

NI
'Mahalancbis distance measure produced less accurate matching than

subjectively weighted distance measures.

As we mentioned earlier, our own Monte Carlo study was confined

to a trivariate normal model. However, our findings were suff'i

clently interesting to justify their inclusion in this thesis. In 1
fact, some new facts about Kadane's bias-avoiding matching strategy

have already been mentioned in Section 3.1. Suppose, then, that

W (X,YZ) is tri-variate normal with zero means and variance-

covarlance matrIx

P 1P (3.3.1)

xz yz

Assume further that the following data is available for the purpose

of estimating the three unknown correlations in (3.3.1):
0."e.

, .' .. .-. ; . . . , - " , .... ., ,., ., , ..,,, --, . . . . ... . . ."- .. .. .. - -, ,. - . i. -
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File 1: (XiZ ), 1 1,2 . n (3.3.2)

File 2: (Y ), j n+l ...... 2n (3.3.3)

In view of the discussions in Section 3.2, if the conditl(nal

independence assumption X Ul Y I Z or, equivalently,

Oxy :xz Oyz .,'"": 'I

were true, then we can avoid merging the files in (3.3.2) and (A.3.3)

because File 1 and File 2 can be used to get the sample correlations

P and pz which in turn provide the maximum likelihood estimator

of P. namely

P P P (3.3.5)
xy xz yz

We shall say X and Y are conditionally dependent, given Z, 1ff

(3.3.4) does not hold; that is ,.

xy xz yz
,U I .'

For the sake of simplicity, we shall consider hereinafter only the

conditional positive dependence case of the model in (3.3.1), namely 'P,

px >p px (~ 3.3.6) '"

The complementary case of conditional negative dependence, namely

P x~ <  P z P z...., ,.,li
xy < xz yz

can, however, be handled by methods similar to ours. We shall also

Include the case when X Y Y I Z holds mainly for comparing and

%

" -" "- ; ': '- -- , . - '"",. .- .. .. '""' i"""5 "" -,-.:....';: . . : ' ":.:: > .< .. , :.> ..... : > ? .:.;....> .i;. : .: .: ... . .... . >...N;
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contrasting our results for the positive dependence case. Finally,

we shall evaluate matching strategies only from the point of view of

estimating p x, the correlation between variables which are not In

p the same file, because File 1 and File 2 can respectively be used to

estimate the remaining parameters p and p
xz yz

It is clear that, if the condition X I Y I Z does not hold, then

we should not estimate p x by means of (3.3.5). In such a case,

'p. matching the files (3.3.2) and (3.3.3) for estimation purposes is an

alternative that we shall study In this section. Thus, if after

merging, File 1 becomes the synthetic File 1 namely

(X1,Y!,zi) i = 1,2, . ... , n (3.3.7) V

thwhere Y! is the value of Y assigned to the i record in the process

of merging. then we shall use the synthetic data (Xi,YT),

i = 1,2 ... , n to estimate pxy"

It was mentioned in Section 1.7 that performance characteris-

tics, which can help us assess the reliability of synthetic data

generated by independent files in (3.3.2), are not known. Given this

paucity, our program for an empirical evaluation of matching strate-

gies is as follows

(I) Starting with a known correlation matrix given by (3.3.1),

generate data from the normal population of W = (X,Y,Z) and

create independent files (3.3.2) and (3.3.3). Note that data

on (X,Y), which is typically missing In actual matching

situations, is available in simulation studies.

,%"

N"..P P ~. . ~ ~ . ~-- P6

V p %,,'~'
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(ii) Using any given matching strategy, merge the two files created

In Step (I) and compute the "synthetic correlation", denoted

by ps. which is defined to be the sample correlation coeffi-

cient based on the (X,Y*) data given by the synthetic file

(. 3 .7)

(III) Compare p of Step (Mi) with the following sample

correlations:

(a) Pmt1' the sample correlation coefficient based on the

unbroken data (XY ), I = 1,2, ... , n which was genera

ted In Step (i). Observe that, if there is no apriori

restriction on the model parameters in (3.3.1), then pm.1

is the maximum likelihood estimator of pxy

(b) Pm12 , the estimator of p given by (3.3.5), which is

also the maximum likelihood estimator of pxy when condi-

tional Independence holds.

Because pmil and Pm, are respectively based on one

sample on (X,Y) and two independent samples on (X,Z) and

(Y,Z), we shall also refer to these as one-sample and two

sample estimates of pxy"

Using the aforementioned program, we shall evaluate Kadane's

distance-based matching strategies discussed in Section 3.1, namely

the isotonic matching strategy and the procedure induced by the

Mahalanobis distance, and the method of matching in bins, which, as

explained in Subsection 3.1.?, is an adaptation of a strategy due to

4

Ne%
i -. - - -p P.
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Sims (1978). The synthetic correlations resulting from the use of

these three strategies will be denoted by psl, ps2 and P.3

respectively.

Our study has been conducted for three values of n, namely 10, S

25 and 50. The values of the population correlation p which
xy

are used, among others, to generate random deviates from the normal

population of W = (X,Y,Z), were chosen from the following categories:

Low Pxy: 0.00, 0.25

Medium p: 0.50, 0.60, 0.65, 0.70 (3.3.8)

High xy: 0.75 (0.05) 0.95, 0.99 
e

Combined with low as well as high values of pxz and p yz , there were

15 choices of pxy from (3.3.8) such that the conditional

independence restriction (3.3.5) was satisfied. As remarked earlier,

these correlations were chosen mainly to provide a basis such that

the estimates of pxy resulting from the case of conditional

positive dependence can be compared with those resulting from

conditional independence. The fifteen values of pxy in the
xft

conditional independence case were increased in such a way that the

upositive dependence was achieved. Altogether, nineteen such Y's

were selected.

For n=10, W was generated 1000 times by using the IMSL

subroutines. The calculation of P5 1 was based on sorting Z's in

the two files, as discussed in Section 3.1.1. Furthermore, ps2 was

sos

computed for each realization by solving a linear assignment problem.

ON
%af
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The Ford-Fulkerson algorithm (Zionts, 1974) was used for this

purpose. The computational cost for solving assignment problems grew

'.V

quite rapidly with n. Therefore, only 700 independent samples of

size n-25 were generated. A comprehensive examination of the results -

for n=10,25, revealed p.1 and ps2 , the correlations corresponding .,.

to Kadane's two distance measures, were, for all practical purposes,

identical (see Figures 3.1 and 3.2). In view of this and the high

computational costs, we compared only two strategies, the isotonic

and the method of matching in bins for n=50 (2500 independent

samples).

Four summary statistics, namely the mean, the standard ..

,%
deviation, the minimum and the maximum for the simulated data on

PmtlPmt2,PslPs2,p 3 were calculated for 34 I's selected p

for the study. However. we provide these statistics only for a

representative collection of 15 I's in tables 3.1 to 3.7. For

each I and for any p, the first entry in the tables is the mean,
I

the second entry (in parentheses) is the standard deviation and the

third and the fourth entries are respectively the minimum and the

maximum. Also, the General Plotting Package at The Ohio State

University was used to plot the following pairs of estimates of pxy ,. -.

(t) ps vs. s , i-

I(ii) Ss s s3"

"s,

(iii) ps vs. P mtl

. * '

I

*% . % . ,~. %**, . * -
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(iv) vs. P_2

(vI) Ps VS. Pml,] -~s2 ~ mtl

(vill) s . P

(vii) 3 V5 mt2

Figures 3.1 to 3.20 provide an illustration of these comparisons.

4.' 3.3.1 Conclusions of the Monte Carlo Study

Tables 3.1 to 3.4 clearly show that the two estimates Psl and

Ps2. provided by the isotonic matching strategy and the Mahalanobis-

distance based strategy, respectively have nearly identical summary

statistics. In fact, an examination of all the results showed that,

for all values of n and I in our study, the estimates Ps1 and Ps2

were the same for most of the realizations of W. Figures 3.1 and 3.2

provide the empirical evidence of this fact.

Now we shall discuss our results in the case of conditional

Independence. As noted in Section 3.2, Pmt2 is the maximum likelihood

estimator of pxy under this model, whereas pml' the method of

moments estimator based on paired-data, is computed for comparison 4.4

purposes. As expected, p and p behave equally well on the

average even though the estimated standard error of pmtl is consis-

tently higher than that of pmt2" Furthermore the ranges of pml

•0 mt2' MU

POW
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are consistently larger than those of p 1 2 (see Tables 3.1, 3.3 and I
3 . 5 ) . ,

3.5).

For low correlation and each n, psl' Ps 2 and ps 3 compare well

with the estimates pm1 ' or pmt2 as far as the averages are concerned S

(see Tables 3.1, 3.3 and 3.5). However, the synthetic data estimators
p.

have larger variation than Pm12' as shown in Fig. 3.3 - Fig. 3.5.
-N

Furthermore, all the synthetic data estimators have variation 5

comparable to that of pm 1 as shown in Fig. 3.6 - Fig. 3.8. w' _

For medium and high values of pxy, all three synthetic estima- ,,

tors exhibit some amount of negative bias with regard to both Pm 1  I

and P 2 . Also, p 3 ' the estimator given by the method of matching

In bins, Is more negatively biased than p 1 and P5 2. Tables 3.1, 3.3 4%
' %j

and 3.5. Fig. 3.9- Fig. 3.14 illustrate these points. Again, ps3 is

wovse than ps and ps2 These patterns among the five estimates .,

exist for any sample size even though the difference between

synthetic data estimators and Pm 2 tends to decrease as n Increases. I
- _

Turning to the conditional positive dependence case, we first %

note that pm 1 is a reasonable estimator of p , even though it would
xy

not be available to the practitioner. On comparing pm 1 with the '

synthetic- data estimators Psi' Ps2 ' and p 3 and pm 2 ' we find

.,t : .... ,"t i " r;orform v-ry ba,-''. i.n that all of ,hom arp ;. ..

-. , NJ

-%

I

-, ~ ~ . .~. %% .- N'~ ~.* '. ,F.'s i. ' -



the three synthetic data estimators have a definite negative bias

compared with p 1 2. Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.16 -

Fig. 3.19 support this conclusion. Furthermore it is observed that

Sps 3 based on binning is worse than psl (Ps2) as illustrated by

Fig. 3.20. However, the difference between the average 2 and

s i = 1,2,3 tends to decrease as n increases.

Finally it must be pointed out that as the positive dependence

increases; ie,pxy-pxzpy z increases, the bias in the three

synthetic data estimators and pmt2 increases. Tables 3.4 and 3.7

illustrate this fact. 0

Based on these observations, we must conclude that when

conditional independence model holds, the synthetic data estimators

do not provide any advantage over Pm 2 , the no-matching estimator. 9

In fact, they are slightly worse than the pmt2" On the other hand,

in the case of conditional positive dependence, pmt2 and all the

synthetic data estimators perform badly, the performance of 0

synthetic data estimators being slightly worse than that of pmt2"

Thus estimators based on matching strategies do not seem to provide

any advantage over the estimators based on the assumption of 0

conditional independence and no matching. Thus for estimating pxy

in Case III models, the extra work involved in matching data files

is almost worthless. Further studies are in order for much larger

sample sizes to examine if this picture changes at all. We should

point out that it is possible that matching may be useful for

S,
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extracting some other features of4 the joint distribution and further -

4w4. I
Monte Carlo studies are warrented to explore this. ° :

N.

I

'.4r

4,,
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Table 3.1 Summary Statistics of Sample ,.5
Correlations - Files with n=10 Records

Conditional Independence Case

%F

P xz P yz xy P mil P m 2  P sl P s2 P s3

0.0149 -0.0032 -0.0101 -0.0100 -0.0114

(0.3384) (0.1127) (0.3296) (0.3297) (0.3212)

0.00 0.10 0.00 -0.8170 -0.5844 -0.7575 -0.7575 -0.8506

0.8472 0.4675 0.8590 0.8590 0.7708

0.5879 0.5794 0.5457 0.5457 0.5105

(0.2212) (0.2006) (0.2337) (0.2337) (0.2396)

". 0.92 0.65 0.60 -0.6523 -0.4040 -0.6058 -0.6058 -0.6058

0.9753 0.9431 0.9626 0.9626 0.9681

0.6830 0.6638 0.6150 0.6151 0.5748

(0.1986) (0.1728) (0.2087) (0.2086) (0.2230)

0.93 0.75 0.70 -0.3369 -0.1437 -0.3115 -0.3115 -0.3396

0.9936 0.9609 0.9576 0.9576 0.9696
FZ

PI
., ,/

S' ,
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N1'

Table 3.1 (Cont'd.)

'I.-

xz 'yz pxy Pmtl Pmt2 Psp s2 Ps3

0.7863 0.7775 0.7302 0.7302 0.6874 a'

(0.1445) (0.1182) (0.1522) (0.1522) (0.1731)

0.94 0.85 0.80 -0.3432 0.2058 -0.2367 -0.2367 -0.2367::' :

0.9879 0.9566 0.9799 0.9799 0.9723 -

0.8937 0.8901 0.8252 0.8251 0.7789

(0.0764) (0.0625) (0.0994) (0.0995) (0.1236) . \,

0.95 0.95 0.90 0.3247 0.3508 0.3821 0.3821 0.1796 -- S

0.9949 0.9814 0.9850 0.9850 0.9725

0.9448 0.9421 0.8758 0.8760 0.8238
(0.0419) (0.0317) (0.0741) (0.0741) (0.1063) '

0.97 0.97 0.95 0.5329 0.7364 0.5027 0.5027 0.2123

0.9973 0.9910 0.9898 0.9898 0.9868 ,'. .. o

'.,
--, :

,: : ,:,". .: "< .'.':'.',.''.o :';, -'.-,'.,v.'.' ," ", ', .,:".'-,':' ', '-".. .'... ,.'; 7".. :11 .'
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Table 3.2 Summary Statistics of Sample
Correlations -- Files with n=l0 Records

Conditional Positive Dependence Case

Pxz Pyz Pxy Pml P mt2 Psl Ps2 Ps3  0

0.9413 -0.0046 -0.0289 0.0395 -0.0153

(0.0474) (0.1142) (0.3310) (0.3327) (0.3269)

0.00 0.10 0.95 0.5942 -0.5723 -0.8425 -0.8525 -0.8962

0.9959 0.5302 0.8897 0.8897 0.8181

0.8676 0.5729 0.5276 0.5108 0.4919

(0.0885) (0.2021) (0.2403) (0.2443) (0.2483) ,

* 0.92 0.65 0.88 0.2744 -0.5510 -0.6166 -0.6248 -0.6119 .

0.9914 0.9407 0.9621 0.9621 0.9621

0.9103 0.6771 0.6310 0.6262 0.5834

(0.0666) (0.1617) (0.2018) (0.2050) (0.2085) 4,

0.93 0.75 0.92 0.4811 -0.2063 -0.3529 -0.3529 -0.2667

0.9918 0.9448 0.9722 0.9722 0.9892

1% %,

.. %

;' •'

.4--
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Table 3.2 (Cont'd.) -,

pxz pyz pxy pmi1 pmt2 Psi ps2 ps3 , -'

0.9558 0.7741 0.7188 0.7165 0.6687 a

(0.0353) (0.1153) (0.1573) (0.1578) (0.1781)

0.94 0.85 0.96 0.6288 0.2202 -0.2325 -0.2325 -0.1806

0.9960 0.9798 0.9707 0.9707 0.9535

0.9775 0.8871 0.8225 0.8211 0.7770

(0.0177) (0.0640) (0.1036) (0.1040) (0.1231) .'

0.95 0.95 0.98 0.8491 0.4165 0.2546 0.2546 0.0215

0.9986 0.9783 0.9922 0.9922 0.9727

0.9888 0.9439 0.8770 0.8774 0.8258

(0.0088) (0.0329) (0.0760) (0.0755) (0.1039) . .

0.97 0.97 0.99 0.9184 0.6081 0.4432 0.4432 0.3541

0.9992 0.9919 0.9894 0.9894 0.9857

- U'
'. -
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Table 3 .3 Summary Statistics of' Sample
Corr-elations -- Files with n-.25 FReords

P Conditional Independence Case

xz yz xy mi.L 1 m92 sl ~s2 ~s3 V

-0.0068 0.0001 -0.0025 -0.0026 0.0040

(0.2059) (0.04L79) (0.2013) (0.2014) (0.2008)

0.00 0.10 0.00 -0.6576 -0.2851 -0.5749 -0.5749 0.6980

0.5450 0.2501 0.6196 0.6196 0.5087

0.5915 0.5T88 0.5568 0.5564 0.5171 0

(0.1336) (0.1231) (0.1365) (0.1365) (0.1476)%

0.92 0.65 0.60 -0.0576 -0.0890 0.0259 0.0259 -0.0468

- , -

0.8704 0.8189 0.8663 0.8663 0.8096

0.6859 0.6859 0.6620 0.6627 0.6111

.,, ,

(0.1087) (0.0935) (0.1096) (0.1097) (0.1216)

,:..: ,'4..

440.93 0.75 0.70 0.2953 0.2697 0.1828 0.1828 0.1642

0.9022 0.8959 0.8955 0.8955 0.89730

"~.

4'.
o

.

.I

4.....

S

Tabe 33 un~ar Sttitic o Sapl

Corrlatins Fils wth n25 ,:ods
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Table 3.3 (Cont'd.)

p

p p p p pp p p 'xz yz xy mil Pmt2 si s2 s3

0.7993 0.7934 0.7644 0.7643 0.7129

(0.0754) (0.0617) (0.0789) (0.0790) (0.0964)

0.94 0.85 0.80 0.4274 0.4778 0.4617 0.4617 0.2724

0.9380 0.9087 0.9139 0.9139 0.9241

0.8967 0.8961 0.8648 0.8643 0.8049

(0.0416) (0.0313) (0.0473) (0.476) (0.0676)

0.95 0.95 0.90 0.7057 0.7592 0.6580 0.6580 0.4614 .

0.9753 0.9636 0.9632 0.9632 0.9297

0.9479 0.9473 0.9117 0.9123 0.8485

(0.0211) (0.0154) (0.0327) (0.0326) (0.0605)

0.97 0.97 0.95 0.8446 0.8638 0.7636 0.7636 0.5102

0.9874 0.9755 0.9735 0.9735 0.9519 ..
%

%7p 'p

' % ' p' % .'' ..° '. ." ' .' ." " "- ', '''' -- C ' '-' ' % -, .%' -' .%' ' '- ° '% % % " " % ' % i f ] " '
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Table 3.4 Summary Statistics of Sample
Correlations - Files with n=25 Records

OR Conditional Positive Dependence Case

Pxz Pyz xy Pmtl Pmt2 Psi Ps2  Ps3

0.9475 -0.0019 0.0058 -0.0372 -0.0004

(0.0222) (0.0439) (0.2061) (0.2038) (0.1989) S

0.00 0.10 0.95 0.8249 --0.2817 -0.5665 -0.5480 -0.7596
0.9857 0.1963 0.6964 0.6964 0.15557

0.8758 0.5857 0.5643 0.5149 0.5277

(0.0503) (0.1207) (0.1331) (0.1436) (0.1425)

0.92 0.65 0.88 0.6051 0.1442 0.1621 0.0617 0.0404 .. %

0.9738 0.8344 0.8896 0.8896 0.8512 V

0.9143 0.6907 0.6627 0.6489 0.6190

(0.0361) (0.0851) (0.1058) (0.1093) (0.1125) %

0.93 0.75 0.92 0.6844 0.2967 0.2949 0.2641 0.1829

0.9774 0.8876 0.8661 0.8642 0.9020 0

in

2 %'~ ," 9.r '

V4;
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Table 3.4 (Cont'd.)

PXZ Pyz Pxy Pmtl PmL2 Psi Ps2 Ps3 .

0.9578 0.7931 0.7641 0.7539 0.7127

(0.0174) (0.0624) (0.0832) (0.0853) (0.0948)

0.94 0.85 0.96 0.8756 0.5449 0.3612 0.3647 0.3425

0.9893 0.9226 0.9181 0.9174 0.9128

0.9792 0.8956 0.8614 0.8543 0.7998

(0.0096) (0.0308) (0.0496) (0.0516) (0.0691) ..

0.95 0.95 0.98 0.9131 0.7693 0.6315 0.6226 0.5157

0.9959 0.9661 0.9647 0.9647 0.9413

0.9895 0.9475 0.9123 0.9139 0.8499

(0.0042) (0.0158) (0.0339) (0.0336) (0.0584)

0.97 0.97 0.99 0.9685 0.8769 0.7182 0.7352 0.5685

0.9972 0.9833 0.9769 0.9849 0.9773

- V,

•.I. .

J

* .
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Table 3.5 Sunnary Statistics of Sample P'%

Correlations - Files with n-50 Records a

Conditional Independence Case 
-

Pxz Pyz Pxy Pmt1 Pm%2 Psi Ps3 S

-0.0004 -0.0003 -0.0019 -0.0044 -

(0.1436) (0.0242) (0.1474) (0.1445)

0.00 0.10 0.00 -0.4381 -0.1663 -0.4872 -0.5205 e

0.4746 0.1244 0.4398 0.4574 .,

0.5936 0.5952 0.5823 0.5391

(0.0916) (0.0794) (0.0909) (0.0959)

0.92 0.65 0.60 0.2530 0.2219 0.2242 0.1098 %

0.8377 0.8103 0.7998 0.7873 P..

0.6950 0.6953 0.6807 0.6279

(0.0756) (0.0612) (0.0709) (0.0815)

0.93 0.75 0.70 0.2796 0.3696 0.3760 0.2526

0.8768 0.8426 0.8718 0.8543

.-. , ,
°. .4-

I..%"

CJ
L u0
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Table 3.5 (Cont'd.)

Pxz Pyz Pxy Pmtl Pmt2 Psi Ps3 .. 1

0.7959 0.7974 0.7797 0.7198

(0.0528) (0.01408) (0.0527) (.0645)

0.914 0.85 0.80 0.5689 0.5664 0.14919 0.14531 r

0.9204 0.9082 0.9222 0.8821

0.8982 0.8978 0.8778 0.8110

(0.0289) (0.0200) (0.0306) (0.0493)

0.95 0.95 0.90 0.7152 0.78145 0.7331 0.6079

0.9634 0.9467 0.9595 0.9149

0.91486 0.9490 0.9276 0.8559 '-.

(0.0151) (0.0103) (0.0199) (0.0419)

0.97 0.97 0.95 0.8549 0.9100 0.8039 0.6529 .

0.9808 0.9743 0.9761 0.9576 e

.-

%,

" |*

) .~
" '.

" " '%, "".,. , ., , -, -, ,, . ., ... . . . .,'•."

" i " ,o ., **,., ... .. * ,..-...... .. .. , P 4.,.,..; . ,..,. d. ... ... ... :..



FN
~"1

151 II

Table 3.6 Summary Statistics of Sample
Correlations - Files with n=50 Records
Conditional Positive Dependence Case 0

Pxz Pyz Pxy Pmtl Pmt2 Psl Ps3

.

0.9491 0.0001 0.0015 0.0025

(0.0148) (0.0245) (0.1475) (0.1427)

0.00 0.10 0.95 0.8700 -0.1447 -0.5256 -0.5157

0.9828 0.1506 0.4727 0.5145

0.8776 0.5934 0.5809 0.5358

(0.0336) (0.0817) (0.0928) (0.0981)

0.92 0.65 0.88 0.6908 0.2791 0.1519 0.1593

0.9576 0.8031 0.8181 0.8338

0.9183 0.6944 0.6771 0.6257

(0.0225) (0.0638) (0.0752) (0.0834)

0.93 0.75 0.92 0.8119 0.4028 0.3506 0.2950

0.9698 0.8628 0.8599 0.8595 '

',tt- ; ? -: ; : ; ; ; %:; > v v.; -.-.v. -.-.-..--:.-.-.-.---.-..-,-v,-..-
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Table 3.6 (Cont'd.)

.4"

Pxz Pyz Pxy PmIt1 Pm12 Psi Ps3

0.9595 0.7967 0.7803 0.7198

(0.0116) (0.0415) (0.0512) (0.0627)

0.94 0.85 0.96 0.8793 0.6023 0.5699 0.3595

0.9853 0.8960 0.9158 0.8824

0.9794 0.8973 0.8776 0.8106

(0.0061) (0.0200) (0.0294) (0.0468)

0.95 0.95 0.98 0.9390 0.8096 0.7596 0.6273 O

0.9932 0.9506 0.9570 0.9279

0.9898 0.9492 0.9281 0.8555

(0.0029) (0.0107) (0.0200) (0.0426)

0.97 0.97 0.99 0.9736 0.8927 0.8181 0.6501

0.9964 0.9757 0.9713 0.9555

hi.i
,41~

',S



. _. , . S.

I~J
153 t-

2d,
5 

'

Table 3.7 Summary Statistics of Sample 
,k

Correlations - Files with n=25 Records
Conditional Positive Dependence Case

--.

PX PZ Px Pm~ Pm£ Pl PsP3
xz ~yz xy ~mtl ~mt2 p51  s2 ~s3 -. *

0.4933 0.0008 -0.0027 -0.0063 0.0012 PF

(0.1574) (0.0451) (0.2117) (0.2105) (0.2044) e>

0.00 0.10 0.50 -0.0632 -0.1632 -0.6421 -0.6421 -0.0035 ,

0.8777 0.1976 0.6186 -0.6186 0.5807

0.7425 0.5876 0.5655 0.5622 0.5236

(0.0940) (0.1108) (0.1292) (0.1301) (0.1430)

0.92 0.65 0.75 0.2986 0.1141 -0.0065 -0.0065 0.0205

0.9390 0.8326 0.8621 -0.8621 0.8285

I'."'

0.7943 0.6919 0.6683 0.6691 0.6249 0

(0.0762) (0.0889) (0.1109) (0.1102) (0.1180)

0.93 0.75 0.80 0.3982 0.3129 0.1844 0.1844 0.2023

0.9373 0.8978 0.9047 0.9047 0.8853

k %.m

%S

p.=

a_ 
• y

5,..

*1~5 *5~*
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